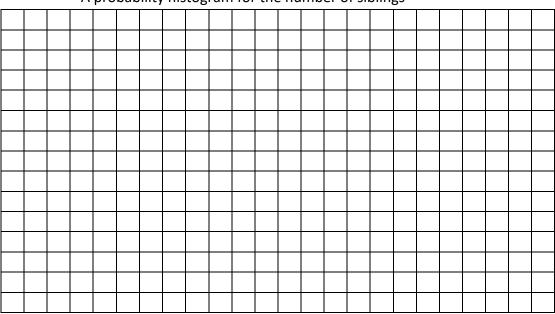
PROBABILITY DISTRIBUTIONS FOR DISCRETE VARIABLES

- \Rightarrow A probability distribution is a mathematical model that describes probabilities for <u>all</u> <u>possible outcomes</u> of an experiment or a sample space.
- \Rightarrow The sum of all probabilities in any distribution is 1.
- ⇒ A random variable is a quantity that can have a range of values. A random variable is denoted by a capital X (Y, Z), with individual values designated by a lower-case x (y, z) with a numerical subscript.
 - A discrete random variable is a variable that can only have certain values within a given range. (Number of H when a fair coin is tossed 4 times, sum of two numbers when two dice are rolled once, number of students on the Honour Roll, number of years one lived in the Yukon, ...).
 - A continuous random variable is a variable that can have infinite number of possible values in a given range. (Time needed to complete a test, time spent on commuting to school, time a certain flight is delayed throughout a year, ...).
- \Rightarrow A probability distribution is often shown as a table/graph of probability versus the value of the random variable. The graph is called a probability histogram.


a)	
х	Value of x _i	P(x)
	(number	
	rolled on a	
	die)	
<i>x</i> ₁	1	$\frac{1}{6}$
<i>x</i> ₂	2	$\frac{1}{6}$
<i>x</i> ₃	3	$\frac{1}{6}$
<i>x</i> ₄	4	$\frac{1}{6}$
<i>x</i> ₅	5	$ \begin{array}{r} \overline{6} \\ 1 \\ 1 \\ \end{array} $
<i>x</i> ₆	6	$\frac{1}{6}$

b)		
x	Value of x _i (number of siblings)	P(x)
<i>x</i> ₁	0	
<i>x</i> ₂	1	
<i>x</i> ₃	2	
x_4	3	
<i>x</i> ₅	4	
<i>x</i> ₆	5	

Example 1:

⇒ A probability histogram is a graph of a probability distribution in which equal interval are marked on the horizontal axis and the probabilities associated with these intervals are indicated by the areas of the bars.

Example 2:

A probability histogram for the number of siblings

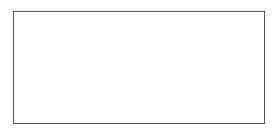
Weighted Mean

- \Rightarrow The mean (= average) of a set of numbers that are given weightings based on their frequency.
 - Create a frequency table
 - Multiply each number (value of the discrete variable) by its weight (= frequency) and divide by the sum of the weights (=number of respondents, experiments,...)

х	Value of x _i	Frequency
	(number of	
	siblings)	
<i>x</i> ₁	0	
<i>x</i> ₂	1	
<i>x</i> ₃	2	
<i>x</i> ₄	3	
<i>x</i> ₅	4	
<i>x</i> ₆	5	

Weighted mean =

Expected Value = expectation = E(X)


- \Rightarrow <u>The Expectation</u> of a probability distribution is the predicted average of all possible outcomes. In other words, it is the weighted average value of the random variable.
- ⇒ It is important to keep in mind that the value of the expectation can be a decimal or a fraction even if the value of the random variable is always integral. Furthermore, the value of the expectation can be an integer that is never possible as a value of individual outcomes.
- \Rightarrow Formula:

Example 3. Find the E(x) of the number of siblings.

UNIFORM DISTRIBUTION

- A uniform distribution occurs when, in a single trial, all outcomes are equally likely.
- For a uniform distribution P(x) = 1/n, where n is the number of possible outcomes in the experiment.
- Formula for E(X) =
- When calculating E(X), you can find the sum of the numbers from 1 to n using a formula:

Note: The expectation of a fair game is equal to zero.

- Examples of uniform distributions:
- Rolling a six-sided die <u>once.</u>
- Tossing a fair coin <u>once.</u>
- Selecting a single card from a standard deck of cards.
- Choosing a number from 10 digits available.