PROBABILITY DISTRIBUTIONS FOR DISCRETE VARIABLES

\Rightarrow A probability distribution is a mathematical model that describes probabilities for all possible outcomes of an experiment or a sample space.
\Rightarrow The sum of all probabilities in any distribution is 1.
\Rightarrow A random variable is a quantity that can have a range of values. A random variable is denoted by a capital $X(Y, Z)$, with individual values designated by a lower-case $x(y, z)$ with a numerical subscript.

- A discrete random variable is a variable that can only have certain values within a given range. (Number of H when a fair coin is tossed 4 times, sum of two numbers when two dice are rolled once, number of students on the Honour Roll, number of years one lived in the Yukon, ...).
- A continuous random variable is a variable that can have infinite number of possible values in a given range. (Time needed to complete a test, time spent on commuting to school, time a certain flight is delayed throughout a year, ...).
\Rightarrow A probability distribution is often shown as a table/graph of probability versus the value of the random variable. The graph is called a probability histogram.

Example 1:
a)

x	Value of x_{i} (number rolled on a die)	$P(x)$
x_{1}	1	$\frac{1}{6}$
x_{2}	2	$\frac{1}{6}$
x_{3}	3	$\frac{1}{6}$
x_{4}	4	$\frac{1}{6}$
x_{5}	5	$\frac{1}{6}$
x_{6}	6	$\frac{1}{6}$

b)

x	Value of x_{i} (number of siblings)	$P(x)$
x_{1}	0	
x_{2}	1	
x_{3}	2	
x_{4}	3	
x_{5}	4	
x_{6}	5	

\Rightarrow A probability histogram is a graph of a probability distribution in which equal interval are marked on the horizontal axis and the probabilities associated with these intervals are indicated by the areas of the bars.

Example 2:
A probability histogram for the number of siblings

-							-							-							
-																					

Weighted Mean

\Rightarrow The mean (= average) of a set of numbers that are given weightings based on their frequency.

- Create a frequency table
- Multiply each number (value of the discrete variable) by its weight (= frequency) and divide by the sum of the weights (=number of respondents, experiments,...)

x	Value of x_{i} (number of siblings)	Frequency
x_{1}	0	
x_{2}	1	
x_{3}	2	
x_{4}	3	
x_{5}	4	
x_{6}	5	

Expected Value $=$ expectation $=E(X)$

\Rightarrow The Expectation of a probability distribution is the predicted average of all possible outcomes. In other words, it is the weighted average value of the random variable.
\Rightarrow It is important to keep in mind that the value of the expectation can be a decimal or a fraction even if the value of the random variable is always integral. Furthermore, the value of the expectation can be an integer that is never possible as a value of individual outcomes.
\Rightarrow Formula:

Example 3. Find the $\mathrm{E}(\mathrm{x})$ of the number of siblings.

UNIFORM DISTRIBUTION

- A uniform distribution occurs when, in a single trial, all outcomes are equally likely.
- For a uniform distribution $\mathrm{P}(\mathrm{x})=1 / \mathrm{n}$, where n is the number of possible outcomes in the experiment.
- Formula for $\mathrm{E}(\mathrm{X})=$
- When calculating $E(X)$, you can find the sum of the numbers from 1 to n using a formula:

Note: The expectation of a fair game is equal to zero.

- Examples of uniform distributions:
- Rolling a six-sided die once.
- Tossing a fair coin once.
- Selecting a single card from a standard deck of cards.
- Choosing a number from 10 digits available.

