Introduction to Sets and Venn Diagrams

1. A set is a collection of items (=elements) that share certain properties.

- Sets are denoted by capital letters.
- Items that belong into a particular set are enclosed in braces (=curly brackets) and separated by a comma when listed.

Examples:
2. A subset is a collection of none, some or all items in a particular set.

- Subsets are denoted by capital letters.
- A set A is a subset of a set B if and only if every element in A is also in B.
- Notation: \qquad
- A set A is a proper subset of a set B if and only if every element in A is also in B, and there exists at least one element in B that is not in A.
- Notation: \qquad
- Note, by the above definitions, a set can be its own subset.

3. A universal set is a collection of everything that has certain properties.

- Sometimes "..." is used to show that there is a pattern in the list of elements in the set.
- Notation: \qquad

4. An empty set $=$ Null set is a set that contains no elements.

- An empty set is a subset of every set including an empty set.
- Notation: \qquad or \qquad

5. A Cardinality = order of a set is the number of elements in the set (= the size of the set).

- Order in which elements are listed in a set is not important. For example, given $A=\{1,2,3\}$ and $B=\{3,1,2\}$, sets A and B are equal.

Example:
6. Union = OR= "in either set or both"

- Symbol: \qquad
- Example:

7. Intersection = AND = "only in both sets"

- Symbol:
- Example:

8. Difference $=$ "in one set but not in the other"

- Symbol:
- Example:

Venn Diagrams

1. Intersection of events E and F
2. Union of events C and D
3. Mutually Exclusive Events A and B
4. Complement of event $A=A^{c}$

Mutually Exclusive and Non-Mutually Exclusive Events

- Mutually events have different properties = events that can never occur at the same time (=simultaneously).
Examples:

Additive Principle $=$ Rule of Sum for Mutually Exclusive Events
The probability of either of two mutually exclusive events, A or B, is given by:

$$
\mathbf{P}(\mathbf{A} \text { or } \mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})=\mathbf{P}(\mathbf{A} \cup \mathbf{B})
$$

Principle of Inclusion and Exclusion

If A and B are non-mutually exclusive events, then the total number of favourable outcomes is given by:

$$
\mathbf{n}(A \text { or } B)=\mathbf{n}(A)+\mathbf{n}(B)-\mathbf{n}(A \text { and } B)
$$

Probability of Non-Mutually Exclusive Events

The probability of either of two non-mutually exclusive events, A or B, is number of given by:

$$
\mathbf{P}(\mathbf{A} \text { or } B)=\mathbf{P}(\mathbf{A})+\mathbf{P}(B)-\mathbf{P}(\mathbf{A} \text { and } B)
$$

$$
\mathbf{P}(\mathbf{A} \cup \mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})-\mathbf{P}(\mathbf{A} \cap \mathbf{B})
$$

Example 1: What is the probability of selecting either hearts or a face card from a regular deck of cards?

Example 2: What is the probability of selecting an ace or a face card from a regular deck of cards?

Independent and Dependent Events

- When one event has no effect on the probability of another event, the events are called independent.
- When one event has influence on the probability of another event, the events are called dependent.

Multiplicative Principle for Independent Events = Fundamental Counting Principle

The probability of two independent events, A and B, occurring is given by:

$$
P(A \cap B)=P(A) \times P(B)
$$

Example: Three green marbles and two yellow marbles are placed into a bag. What is the probability of randomly drawing a green marble followed by a yellow marble, assuming that the first marble is replaced before the second marble is drawn?

Multiplicative Principle for Dependent Events

The probability of two dependent events, A and B, occurring is given by:

$$
P(A \cap B)=P(A) \times P(B \mid A)
$$

In words, the probability of two dependent events, A and B, occurring at the same time is given by the product of the probability of occurring and the conditional probability that B occurs given that A already occurred.

- Conditional Probability = probability of a second event occurring, given that the first event occurred. The Sample space for the second event is reduced from the first event. This happens during sampling without replacement.

Example: A fair coin is flipped twice. What is the probability that it will come up once head and once tails, in either order?

