1. Fill in the blanks:
a) Every equation of a quadratic function has to contain term of the form \qquad and the exponent of \qquad has to be the greatest exponent if the equation.
b) The graph of every quadratic function is called \qquad .
c) Every graph of a quadratic function has the following features:

- \qquad
\circ \qquad of symmetry with the equation of the form: \qquad .
- \qquad - intercept of the form: \qquad .
- End behaviour of two possible types: opens \qquad or opens \qquad
d) Every graph of a quadratic function has at most \qquad x-intercepts. Some graphs have
\qquad x-intercept and some have \qquad x - intercept.
e) The original graph of a quadratic function has the equation: \qquad and contains these seven points:

f) The original graph of a quadratic function can undergo several types of transformations:

- \qquad in \qquad -axis will result in a graph that opens \qquad
\qquad translation (\qquad) will result in a graph that has a vertex moved
either to the \qquad or to the \qquad .
- \qquad translation \qquad) will result in a graph that has a vertex moved
either \qquad or \qquad
○ \qquad stretch compression (\qquad) will result in a graph that is
\qquad than the original graph.

○ \qquad stretch expansion (\qquad) will result in a graph that is
\qquad than the original graph.
2. Graph the original parabola:

3. Identify what transformations are represented by letters/symbols in the vertex form of the quadratic equation:

$$
y= \pm a(x-h)^{2}+k
$$

4. Graph $y=-x^{2}+9$ and describe the graph. At least 5 points have to be exact.

Mapping notation:		Transformations:	
Vertex:		Axis of symmetry:	
y-intercept:		End behaviour:	
x-intercept(s):		Maximum or Mininmum value:	

5. Graph $y=(x+3)^{2}+1$ and describe the graph. At least 5 points have to be exact.

Mapping notation:		Transformations:	
Vertex:		Axis of symmetry:	
y-intercept:		End behaviour:	
x-intercept(s):		Maximum or Mininmum value:	

6. Graph $y=-(x-5)^{2}$ and describe the graph. At least 5 points have to be exact.

Mapping notation:		Transformations:	
Vertex:		Axis of symmetry:	
y-intercept:		End behaviour:	
x-intercept(s):		Maximum or Mininmum value:	

7. Graph $y=-(x+2)^{2}+4$ and describe the graph. At least 5 points have to be exact.

Mapping notation:		Transformations:	
Vertex:		Axis of symmetry:	
y-intercept:		End behaviour:	
x-intercept(s):		Maximum or Mininmum value:	

8. Graph $y=-x^{2}-3$ and describe the graph. At least 5 points have to be exact.

Mapping notation:		Transformations:	
Vertex:		Axis of symmetry:	
y-intercept:		End behaviour:	
x-intercept(s):		Maximum or Mininmum value:	

9. Graph $y=-(x-1)^{2}+9$ and describe the graph. At least 5 points have to be exact.

Mapping notation:		Transformations:	
Vertex:		Axis of symmetry:	
y-intercept:		End behaviour:	
x-intercept(s):		Maximum or Mininmum value:	

10. Conclusion:

a) When the original graph undergoes a reflection in the x-axis, a y-coordinate of any point on the new graph is either \qquad or \qquad .
b) If the original graph undergoes a reflection in the x-axis, then the transformed graph opens
\qquad .
c) If the original graph undergoes a reflection in the x-axis, then the transformed graph has a maximum value. This value is the same as the \qquad - coordinate of the \qquad .
d) If the original graph does not undergo a reflection in the x-axis, then the graph opens \qquad , and has a \qquad value. This value is the same as the \qquad - coordinate of the \qquad .
e) Every graph of a quadratic function has an axis of symmetry with an equation $x=$ a real number. This number is the same as the \qquad - coordinate of the \qquad .
f) The value of maximum or minimum is affected by 2 transformations:
\qquad and \qquad .
g) \qquad and have no effect on the value of the minimum or maximum.

