Quadratic Function – Review I

- 1. Fill in the blanks:
- a) Every equation of a quadratic function has to contain term of the form ______ and the exponent of ______ has to be the greatest exponent if the equation.
- b) The graph of every quadratic function is called ______.
- c) Every graph of a quadratic function has the following features: $\hfill \circ$
 - o ______ of symmetry with the equation of the form:______.
 - _____ intercept of the form: ______.
 - End behaviour of two possible types: opens _____ or opens _____
- d) Every graph of a quadratic function has at most ______ x-intercepts. Some graphs have
 - ______ x-intercept and some have ______ x- intercept.
- e) The original graph of a quadratic function has the equation: ______ and contains these seven points:

f) The original graph of a quadratic function can undergo several types of transformations:

0		inaxis will res	ult in a graph that opens
0		translation () will result in a graph that has a vertex moved
	either to the	or to the	·
0		translation (_) will result in a graph that has a vertex moved
	either	or	
0		stretch compression () will result in a graph that is
		than the original graph.	
0		stretch expansion () will result in a graph that is
		than the original graph.	

PC 11

3. Identify what transformations are represented by letters/symbols in the <u>vertex form</u> of the quadratic equation:

$$y = \pm a(x-h)^2 + k$$

4. Graph $y = -x^2 + 9$ and describe the graph. At least 5 points have to be exact.

Mapping notation:	Transformations:	
Vertex:	Axis of symmetry:	
y-intercept:	End behaviour:	
x-intercept(s):	Maximum or Mininmum value:	

5. Graph $y = (x + 3)^2 + 1$ and describe the graph. At least 5 points have to be exact.

Mapping notation:	Transformations:	
Vertex:	Axis of symmetry:	
y-intercept:	End behaviour:	
x-intercept(s):	Maximum or Mininmum value:	

6. Graph $y = -(x - 5)^2$ and describe the graph. At least 5 points have to be exact.

Mapping notation:	Transformations:	
Vertex:	Axis of symmetry:	
y-intercept:	End behaviour:	
x-intercept(s):	Maximum or Mininmum value:	

7. Graph $y = -(x + 2)^2 + 4$ and describe the graph. At least 5 points have to be exact.

Mapping notation:	Transformations:	
Vertex:	Axis of symmetry:	
y-intercept:	End behaviour:	
x-intercept(s):	Maximum or Mininmum value:	

8. Graph $y = -x^2 - 3$ and describe the graph. At least 5 points have to be exact.

Mapping notation:	Transformations:	
Vertex:	Axis of symmetry:	
y-intercept:	End behaviour:	
x-intercept(s):	Maximum or Mininmum value:	

9. Graph $y = -(x - 1)^2 + 9$ and describe the graph. At least 5 points have to be exact.

Mapping notation:	Transformations:	
Vertex:	Axis of symmetry:	
y-intercept:	End behaviour:	
x-intercept(s):	Maximum or Mininmum value:	

10. Conclusion:

•

a)	When the original gr	aph underg	oes a reflectior	n in the x-axis,	, a y-coordinate of	f any point on the
	new graph is either	or				

- b) If the original graph undergoes a reflection in the x-axis, then the transformed graph opens
- c) If the original graph undergoes a reflection in the x-axis, then the transformed graph has a maximum value. This value is the same as the ______ coordinate of the _______.
- d) If the original graph does not undergo a reflection in the x-axis, then the graph opens ______, and has a ______ value. This value is the same as the ______ coordinate of the ______.
- e) Every graph of a quadratic function has an axis of symmetry with an equation
 x = a real number. This number is the same as the ______ coordinate of the ______.
- f) The value of maximum or minimum is affected by 2 transformations:
 ______ and ______.
- g) ______and _____ have no effect on the value of the minimum or maximum.