Quadratic Functions-Translations

1. Which of the following relations below are quadratic functions:

a)
$$y = x^2 - 2x + 3$$
 b) $y = x^3 + 2x - 1$

b)
$$y = x^3 + 2x - 1$$

c)
$$y = \frac{1}{x+1}$$
 d) $y = \frac{1}{x^2}$

d)
$$y = \frac{1}{r^2}$$

e)
$$y = \sqrt{x+2}$$

f)
$$y = \frac{1}{4}x^2$$

- 2. Sketch the graph for each of the following parabola without a calculator (label vertex and the coordinates of two other points) and then state:
 - a) equation of axis of symmetry
 - b) direction of opening
 - c) the maximum or minimum value
 - d) exact values of the x-intercept(s) (if any) and the y-intercept
 - e) the domain and range

$$i) \qquad y = x^2 - 4$$

$$ii) \qquad y = x^2 + 2$$

iii)
$$y = (x-2)^2 + 1$$

$$iv)$$
 $y = (x+1)^2 - 2$

$$y = (x+3)^2$$

$$vi) y = -(x-1)^2$$

$$vii)$$
 $y = -(x+3)^2 + 1$

viii)
$$y = -(x-1)^2 - 3$$

- 3. Write the new equation of the parabola $y = x^2$ after the following:
 - a) a horizontal translation 4 units to the left and a vertical translation 2 units down
 - b) a horizontal translation 2 units right and a vertical translation 3 units
 - c) the parabola opens downwards and translated 3 units up

- d) the parabola opens downwards and is translated 4 units right
- 4. If the point (3, 9) is on the parabola $y = x^2$, what would the coordinates of this point become:
 - a) if the parabola was shifted up three units and left 2 units?
 - b) if the parabola was shifted down I unit and right 5 units?