

PC 11

Solving a System of Quadratic Equations

- There are 4 possible scenarios when solving a quadratic-quadratic system
- 1. There are no real solutions to the system
- When graphed, the parabolas never intersect
- o When solving algebraically, the variables cancel out and the remaining statement is false OR the resulting equation does not have real solutions.

Examples:

Solve:

$$3x^2 = y$$
$$-x^2 - 2x - 35 = y$$

$$3x^{2} = -x^{2} - 2x - 35$$

$$0 = -4x^{2} - 2x - 35$$

2. There are infinitely many solutions to the system

- When graphed, the parabolas coincide (overlap)
- When solving algebraically, the variables cancel out and the remaining statement is true

Examples:

Solve:

$$(x-1)^2-9 = y$$

 $x^2 - 2x - 8 = y$

$$(x-1)^{2}-9=x^{2}-2x-8$$

$$(x-1)^{2}-9=x^{2}-2x-8$$

$$-\theta=-\theta$$

$$(s=Rs) = true statement$$

.. The system how ifinitely money & Solution

3. There is one solution to the system

- When graphed, the parabolas either touch or intersect only once
- When solving algebraically, the variables raised to the power of two cancel out and the remaining equation is linear OR the resulting equation is a perfect square trinomial.

Examples:

Solve:

$$x^2-8x+19=y$$

$$x^2 - 16x + 59 = y$$

: The solution of the yetem 13 X=5 (OR (5,4)).

4. There are two solutions to the system

- When graphed, the parabolas intersect twice.
- When solving algebraically, the resulting equation has two solutions (discriminant is positive).

Examples:

Solve:

$$y = 3x^2 + 30x + 74$$

$$x^2 + 10x + 28 = y$$

$$3x^2 + 30x + 74 = x^2 + 10x + 2P$$

$$x^2 + 10x + 23 = 0$$

: the system how
two solutions:
$$d = -5 + \sqrt{2}$$
 and
 $\alpha = -5 - \sqrt{2}$

$$\chi = \frac{-10 \pm \sqrt{8}}{2} = -\frac{10 \pm 2\sqrt{2}}{2} = \frac{-\sqrt{2} \pm 2\sqrt{2}}{2}$$

$$-\frac{5}{100} \pm 2\sqrt{2}$$

$$= 5 + \sqrt{2}$$

$$= -5 - \sqrt{2}$$