Systems of Linear Equations (solved by graphing)

Ex 1.

Solve by graphing: y = 3x + 3

$$y = -2x - 2$$

• Start with graphing y = 3x + 3

- All points on this line satisfy y = 3x + 3
- Now graph y = -2x 2

• All points on the new line satisfy y = -2x - 2

- The point of intersection is the only point that satisfies both y = 3x + 3 and y = -2x 2 there for it is the solution
- The solution is (-1,0)

Ex 2.

Solve by graphing: $y = -\frac{5}{4}x + 4$ $y = -\frac{5}{4}x$

- First, notice that these lines have the same slope
- That means these two lines are going in the same direction
- Graph for $y = -\frac{5}{4}x + 4$

• Add the graph for $y = -\frac{5}{4}x$

- Since these lines have the same slope and different y int they will never intercept
- There is no real solution

Ex 3.

Solve by graphing: $y = \frac{x}{3} - 3$

$$x = 3y + 9$$

• Start with graphing $y = \frac{x}{3} - 3$

- Convert x = 3y + 9 to slope-intercept form $\rightarrow y = \frac{1}{3}x 3$
- Graph $y = \frac{1}{3}x 3$

- Notice that the lines overlap, all the solutions for $y = \frac{x}{3} 3$ also satisfy x = 3y + 9
- There are infinitely many solutions

