Solving Quadratic Inequalities in One Variable

 Practice1. Solve $0 \leq(2 x-1)(3+x)$

- The product of \qquad is positive. Thus two distinct cases exist: Case I: $(+)(+)$

Case II: (-)(-)

- Combining the solutions of the two cases, the overall solution is:

2. Solve $x^{2}-6 x-7>0$

- The product of \qquad is positive. Thus two distinct cases exist:

Case I: $(+)(+)$

Case II: (-)(-)

- Combining the solutions of the two cases, the overall solution is:

3. Solve $x^{2}+3 x-28 \leq 0$

- The product of \qquad is \qquad Thus two distinct cases exist:

Case I: () ()

Case II: () ()

- Combining the solutions of the two cases, the overall solution is:

4. Solve $3 x^{2}-4 x-2 \leq 30$

- The product of \qquad is \qquad Thus two distinct cases exist:

Case I: () ()

Case II: () ()

- Combining the solutions of the two cases, the overall solution is:

5. Solve $-x^{2} \leq-36$

- The product of \qquad is \qquad Thus two distinct cases exist:

Case I: () ()

Case II: () ()

- Combining the solutions of the two cases, the overall solution is:

6. Solve $5 x^{2}+30 x>0$

- The product of \qquad is \qquad Thus two distinct cases exist:

Case I: () ()

Case II: () ()

- Combining the solutions of the two cases, the overall solution is:

