PC 11

Notes

Quadratic Function – Review I

1.	riii in the blanks:
a)	Every equation of a quadratic function has to contain term of the form $\frac{\mathbb{R} \cdot \mathbb{X}}{\mathbb{X}}$ and the
	exponent of 2 has to be the greatest exponent if the equation.
b)	The graph of every quadratic function is called a parabola.
c)	Every graph of a quadratic function has the following features: OVICE OVICE THE STATE OF THE
	o $\alpha \times i$ of symmetry with the equation of the form: $\alpha = \pi$.
	$\circ \underbrace{\mathcal{J}}_{-\text{ intercept of the form: }} \underbrace{\left(0, \frac{1}{1}\right)}_{-1}.$
	o End behaviour of two possible types: opens or opens
4)	Every graph of a quadratic function has at most x-intercepts. Some graphs have
CV.	The original graph of a quadratic function has the equation: $y = x$ and contains
e)	
	these seven points:
,	
(-	(3,9) $(-2,4)$ $(-1,1)$ $(0,0)$ $(1,1)$ $(2,4)$ $(3,9)$
f)	The original graph of a quadratic function can undergo several types of transformations:
	Reflection in X -axis will result in a graph that opens down
0	
0	Horizontal translation (HT) will result in a graph that has a vertex moved
	either to the <u>fight</u> or to the <u>left</u> .
0	translation () will result in a graph that has a vertex moved
	either or down
0	
	than the original graph.
0	Verb cal stretch expansion (VSE) will result in a graph that is
	NOUND WENT than the original graph.

3. Identify what transformations are represented by letters/symbols in the vertex form of the quadratic equation:

transformations are represented by letters/symbols in the vertex form of the ation:
$$VS = \frac{C(0 + a + 1)}{E(a + 1)}$$

$$VS = \frac{A}{E(a + 1)}$$

$$VS = \frac{C(0 + a + 1)}{E(a + 1)}$$

$$VS = \frac{A}{E(a + 1)}$$

$$VS$$

4. Graph $y = -x^2 + 9$ and describe the graph. At least 5 points have to be exact.

Mapping notation:	(xy) - (x, -y+9)	Transformations:	Rin x-axis
Vertex:	(0,9)	Axis of symmetry:	X=0
y-intercept:	(0,9)	End behaviour:	Opens down
x-intercept(s):	(-3,0) and (3,0)	Maximum or Mininmum value:	Hazimum at

5. Graph $y=(x+3)^2+1$ and describe the graph. At least 5 points have to be exact.

mnummy	no mumixaM Mininimm value:	Mon	x-intercept(s):
du mido	-End behaviour:	(010)	y-intercept:
5-=X	to sixA ymmetry:	(1/2-)	Уетех:
time by the TH	Transformations:	(1+6(8-x) ((R1x)	BniqqeM :noitston

6. Graph $y=-(x-5)^2$ and describe the graph. At least 5 points have to be exact.

Mapping notation:		Transformations:	Rin x-axis HT right by 5 unit
Vertex:	(5,0)	Axis of symmetry:	X=5
y-interce		25) End behaviour:	Open down
x-interce	pt(s): $(5,0)$	Maximum or Mininmum value:	maximum at n=0

V

7. Graph $y = -(x+2)^2 + 4$ and describe the graph. At least 5 points have to be exact.

Mapping notation:	(X17) -> (X-2,-4+4)	Transformations:	Rinx-axis HT left by 2 units,
		x	VT up by 4 muits
Vertex:	1 \	Axis of	
	(-2,4)	symmetry:	X = -2
y-intercept:	(0,0)	End behaviour:	
	(0,0)		Opens down
x-intercept(s):	(0,0) and (-4,0)	Maximum or	maximum
	(1)	Mininmum value:	at 4=4

8. Graph $y=-x^2-3$ and describe the graph. At least 5 points have to be exact.

Mapping notation:	$(x,y) \rightarrow (x,-y-3)$	Transformations:	Rinx-axis VT down by 3
Vertex:	(0,-3)	Axis of symmetry:	X=0
y-intercept:	(0,-3)	End behaviour:	goens down
x-intercept(s):	hone	Maximum or Mininmum value:	maximum af y = -3

9. Graph $y = -(x-1)^2 + 9$ and describe the graph. At least 5 points have to be exact.

Mapping notation:	(x,y) -> (x+1, -y+9)	Transformations:	R-in x-axis HT right by 1 unt VT Up by 9 un
Vertex:	(1,9)	Axis of symmetry:	X=1
y-intercept:	(0,8)	End behaviour:	open down
x-intercept(s):	(-2,0) and (4,0)	Maximum or Mininmum value:	maximum at

10. Conclusion:

a)	When the original graph undergoes a reflection in the x-axis, a y-coordinate of any point on the
	new graph is either <u>0</u> or <u>kegahive</u> .
b)	If the original graph undergoes a reflection in the x-axis, then the transformed graph opens
c)	If the original graph undergoes a reflection in the x-axis, then the transformed graph has a maximum value. This value is the same as the
d)	and has a
e)	Every graph of a quadratic function has an axis of symmetry with an equation $x = a \ real \ number$. This number is the same as the $x = a \ real \ number$. The value of maximum or minimum is affected by 2 transformations:
f)	The value of maximum or minimum is affected by 2 transformations: Vertical translation Reflection in the x-axis Horizontal translation and Vertical Stretch
g)	Horizoutal translation and Vertical Streke have no effect on the value of the minimum or maximum.