Quadratic Functions Expansions, Compressions

- 1. Sketch the graph for each of the following without a calculator (label vertex and the coordinates of two other points) and then state:
 - a) equation of axis of symmetry
 - b) direction of opening and by what factor the graph has been stretched of compressed vertically
 - c) the maximum or minimum value
 - d) exact values of the x-intercept(s) (if any) and the y-intercept
 - e) the domain and range

$$i) \qquad y = 2x^2 - 4$$

(ii)
$$y = -\frac{1}{3}x^2 + 2$$

iii)
$$y = 4(x-2)^2 + 1$$

$$iv$$
) $y = \frac{1}{2}(x+1)^2 - 2$

$$v) \qquad y = -5(x+3)^2$$

$$vi) y = 2(x-1)^2$$

$$vii) y = -3(x+3)^2 + 6$$

$$viii)$$
 $y = -(x-1)^2 - 3$

- 2. Write the new equation of the parabola $y = x^2$ if:
 - a) it undergoes a horizontal translation 2 units to the left and a vertical translation 5 units down and is congruent to $y = 3x^2$.
 - b) it undergoes a horizontal translation 2 units right and a vertical translation 3 units up and congruent to $y = -\frac{1}{2}x^2$.
 - c) the parabola opens downwards and has been stretched vertically by a factor of 4.
 - d) the parabola opens upwards and has been compressed vertically by a factor of one-third.
 - 3. The path a tennis ball takes from a players forehand ground stroke can be modelled by the function: $h(d) = -0.015(d-9)^2 + 1.6$, where h(d) is the height of the ball in metres and d is the horizontal distance the ball has travelled in metres since it was struck.

- a) What is the maximum height the tennis ball reaches?
- b) How far has the ball travelled horizontally from where it was struck when it reaches its maximum height?
- c) What was the height of the ball when it was struck?
- d) How far did the ball travel horizontally from where it was struck to where it landed inside the court?
- e) If the opponent is standing 11 meters away, at what height would he make contact with the ball to volley it back?
- f) State what represents the domain and the range in this example, then list both the domain and the range
- 4. The path a hit baseball takes after leaving a bat can be modelled by the function: $h(t) = -5.2(t-2.8)^2 + 41.5$, where h(t) is the height of the ball in metres and t is the elapsed time in seconds since the ball was hit.
 - a) What is the maximum height the baseball reaches?
 - b) What was the height of the baseball when it was struck?
 - c) How long was the ball in the air before it landed on the ground?
 - d) What was the height of the ball after 4 seconds?
 - e) How long was the ball in the air if an outfielder caught the ball one meter off the ground?
 - f) State what represents the domain and the range in this example, then list both the domain and the range
- 5. The path a baseball takes after being hit can be modelled by the function $h(d) = -0.0095(d-60)^2 + 35$, where h(d) is the height of the ball in metres and d is the horizontal distance the ball has travelled in metres since it was struck.
 - a) What is the maximum height the baseball reaches?
 - b) How far has the ball travelled horizontally from where it was struck when it reaches its maximum height?
 - c) Calculate the horizontal distance the ball travelled?

- d) The ball went over the fence 112 meters away, if the fence was 3 meters tall, by how much did the ball clear the fence?
- e) How far had the ball travelled when it was 20 meters high for the first time?
- f) State what represents the domain and the range in this example, then list both the domain and the range.

Answers

$$1ia$$
) $x = 0$

lic) min of
$$-4$$
 when $x = 0$

1id)
$$(\sqrt{2},0)(-\sqrt{2},0)(0,-4)$$

lie) Domain:
$$x \in R$$
 Range: $y \ge -4$

liiia)
$$x = 2$$

liiic) min of 1 when
$$x = 2$$

1iiie) Domain:
$$x \in R$$
 Range: $y \ge 1$

$$1va$$
) $x = -3$

1vc)
$$\max of 0$$
 when x is -3

$$[1vd)$$
 $(-3,0)$ $(0,-45)$

Ive) Domain:
$$x \in R$$
 Range: $y \le 0$

1
$$iia$$
) $x = 0$

1iib) down, compressed by a factor of
$$\frac{1}{3}$$

1iic)
$$\max of 2 when x = 0$$

1iid)
$$(\sqrt{6},0)(-\sqrt{6},0)(0,2)$$

1iie) Domain:
$$x \in R$$
 Range: $y \le 2$

$$1iva$$
) $x = -1$

livb) up, compressed by a factor of
$$\frac{1}{2}$$

1ivc)
$$\min of -2 \text{ when } x = -1$$

livd)
$$(-3,0)(1,0)(0,-\frac{3}{2})$$

live) Domain:
$$x \in R$$
 Range: $y \ge -2$

$$1via$$
) $x = 1$

lvic)
$$\min of 0$$
 when x is 1

$$1vid$$
) $(1,0)$ $(0,2)$

1vie) Domain:
$$x \in R$$
 Range: $y \ge 0$

1*viia*)
$$x = -3$$

1viic)
$$\max of 6$$
 when x is -3

1*viid*)
$$(-3-\sqrt{2}, 0)$$
 $(-3+\sqrt{2}, 0)$ y-intercept $(0,-21)$

1viie) Domain:
$$x \in R$$
 Range: $y \le 6$

1
$$viiia$$
) $x = 1$

1viiic)
$$\max of -3$$
 when x is 1

1viie) Domain:
$$x \in R$$
 Range: $y \le -3$

2a)
$$y = 3(x+2)^2 - 5$$

2b)
$$y = -\frac{1}{2}(x-2)^2 + 3$$

$$2c) y = -4x^2$$

$$2d) y = \frac{1}{3}x^2$$

- 3a) 1.6 m
- 3b) 9 m
- 3c) 0.385 m
- 3d) 19.3m
- 3e) 1.54m
- 3f) Domain: $0 \le x \le 19.3$ Range: $0 \le y \le 1.6$
- 4a) 41.5 m
- 4b) 0.732 m
- 4c) 5.63s
- 4d) 34.01m
- 4e) 5.59 m
- 4f) Domain: $0 \le x \le 5.63$ Range: $0 \le y \le 41.5$
- 5a) 35m
- 5b) 60 m
- 5c) 120.7 m
- 5d) 6.312m
- 5e) 20.26 m
- 5f) Domain: $0 \le x \le 120.7$ Range: $0 \le y \le 35$