Determining the equation of a quadratic function given 3 pieces of information about the graph

1. Find the equation of a quadratic function in vertex form given that its x intercepts are $(4,0)$ and $(9,0)$. Note, if any two points with the same y coordinate are known, you can find the axis of symmetry. Knowing the axis of symmetry means that you also know the x-coordinate of the vertex.
Is it possible that more than one equation is correct?
2. Find the equation of a quadratic function in vertex form given that its x-intercepts are $(-0.5,0)$ and $(7,0)$. Is it possible that more than one equation is correct?
3. Determine the equation of a quadratic function whose graph is congruent with $y=4 x^{2}$, passes through point $(1,10)$, and its axis of symmetry is $x=6$.
Congruent = same shape and same size. Congruent objects differ only in their position in the plane. That is a translation, rotation, a series of translations and/or rotations can superimpose = overlap one object onto the other. In other words, congruent parabolas have the same value of the vertical stretch.
4. What is the equation of a parabola that is congruent with $y=0.25 x^{2}$, passes through point $(-4,5)$ and has a minimum value $y=-11$. Is there more than one solution?
