carry on the above operations

VECTOR QUANTITIES AND OPERATIONS WITH VECTORS

		or, vectors have both					
		vectors have bo	<u> </u>				
d	•						
	VECTOR		SCALAR				
SYMBOL	QUANTITY	SYMBOL	QUANTITY				
TOR is an oriente	d ray with a head and a tail.						
	-						
×		<u>→</u> =					
	A symbol of a vector quantity has either an arrow on top (\overrightarrow{a} or \overrightarrow{a}) or in older texts is in bolded font (a) .						
Vectors in twoVectors in three	Vectors in two dimensions can be added, subtracted, multiplied by a scalar and multiplied using a dot product (Vectors in three or more dimensions can be added, subtracted, multiplied by a scalar, multiplied using a dot						
	ee or more dimensions can be add nultiplied using a cross product (×		d by a scalar, multiplied using a dot				
	- •		methods exists to				

VECTOR NOTATION

*	Symple - I	_						
<i>></i>	Symbol		Examples:					
A	Equal sign	i						
>	Square brackets							
A A	Vector components separated by a con Units	nma						
	Office	- 1						
		L						
	<u>VECTO</u>	R COMPONENTS	in 2 dimensions					
>	Vector components are vectors and as such they have direction and units							
>	Vector components are perpendicular to one another (= orthogonal)							
F	The horizontal vector component is list							
A	The vertical vector component is listed	second						
Resolvi	ing a vector into its components:							
Evennel	a Find washing and a second of the second							
	e. Find vector components of initial velo notation.	city $v = 5 / \text{ m/s}$ [3	30° above horizontal]. Write the velocity vector in					
VECTOLI	notation.							
Sketch	the velocity vector first. Label the angle	and the vector c	omponents. Use trigonometry to find the vector					
compo	nents. Remember to have your calculate	or set to degrees.						
General formulae for any two dimensional vector $ec{b}$ with direction $ heta$:								
Horizo	ntal component:		Vertical components:					

Magnitude of a vector

Use the Pythagorean theorem to calculate the magnitude of a vector in vector notation
Magnitude is the size of the vector (how fast, how far, how strong ...etc)

Example: Find the magnitude of a displacement vector $\vec{d} = [30,-40]$ km. **include a diagram.**

General formula to find the magnitude of vector $\overrightarrow{m{b}} = [m{b}_x, m{b}_y]$:							

Direction of a vector

> Use a tangent ratio to calculate the direction of a vector in vector notation

Example: Find the direction of the acceleration vector $\vec{a} = [-45, 20] \text{ m/s}^2$

General formula to find the direction of vector $\overrightarrow{m{b}} = [m{b}_x, m{b}_y]$:

GRAPHICAL METHOD

- > A vector diagram must be drawn to scale using a straight edge and a protractor
- > All angles have to be exact
- > The order of vectors is irrelevant when adding vectors
- > The order of vectors is **important** when subtracting vectors
- Vector subtraction is an addition of a negative vector
- > Triangular and parallelogram method are the most frequent graphical methods of vector addition and subtraction

"Negative vector" = vector that has the same magnitude but opposite direction.

Examples: Write negative vectors associated with the following vectors:

$\vec{d}=$ 35 km [W]	$\vec{v} = [20, -68] \text{ km/h}$	$\vec{a} = 9.8 \text{ m/s}^2 \text{ [left]}$	$\vec{F} = [-65, 30] \text{N}$	$\vec{p}=45 \text{ kg.m/s [NW]}$

Example.1. Vector addition - triangular method = "head-to-tail" method

Consider a vector $\vec{d}=[4,-5]$ units and $\vec{c}=[-3,7]$ units. Add the vectors using the triangular method.

Write the resultant vector in vector notation.

What is the vector's magnitude?

What is the vector's direction?

Example 3. Consider a vector $\vec{b} = [4, -5]$ units and $\vec{m} = [-3, 7]$ units. Subtract **m** from **b** using the triangular method.

Negative \overrightarrow{m} =

Write the resultant vector in vector notation:

Example 4. Consider a vector $\vec{b} = [4, -5]$ units and $\vec{m} = [-3, 7]$ units. Subtract **b** from **m** using the triangular method.

Negative \vec{b} =

Write the resultant vector in vector notation:

How the resultant vectors from example 3 and 4 compare? In what way are they same and in what way are they different?

NUMERICAL METHOD

- 1. Sketch a diagram of each given vector.
- 2. Label the vector components on the diagrams
- 3. Sketch a diagram of the vector addition or subtraction
- 4. Resolve all given vectors into their vector components (when necessary)
- 5. Write a vector equation of the addition or subtraction
- 6. Carry out all operations
- 7. Write the resultant vector in vector notation.
- 8. Sketch a diagram of the resultant vector or highlight it in the diagram from step 3.
- 9. Find the magnitude of the resultant vector using the Pythagorean theorem
- 10. Find the direction of the resultant vector using the tangent ratio

Example 1: Consider vectors $\vec{a} = [3, -2] \text{ m}, \vec{b} = [13, 2] \text{ m} \text{ and } \vec{c} = [0, 5] \text{ m}$

a) Find vector $\vec{m} = \vec{a} + \vec{b} + \vec{c}$. What is the magnitude and direction of the resultant vector?

b) Find vector $\vec{q} = \vec{c} - \vec{a} + \vec{b}$. What is the magnitude and direction of the resultant vector?

