Relative Velocity in 2D

- When determining relative velocity, it is important to draw a labeled diagram and carefully assign subscript to velocity vectors.

Example 1:
A person in a small motorboat is trying to cross a river that flows due west with a strong current. The man starts on the south bank and is trying to reach the north bank directly north from his starting point. He should head
a) due north
b) due west
c) in a northwesterly direction
d) in a northeasterly direction
> Justify your reasoning.
> What determines the angle at which the man heads across the river?

Example 2:

A boat's speed in still water is $1.85 \mathrm{~m} / \mathrm{s}$. If the boat is to travel directly across a river whose current has speed of $1.20 \mathrm{~m} / \mathrm{s}$. What is the angle the boat must head when going across the river? Include a labeled diagram.

Example 3:
A boat has a speed of $1.75 \mathrm{~m} / \mathrm{s}$ in still water. The boat heads directly (no corrections) across the river whose current is $1.28 \mathrm{~m} / \mathrm{s}$.
A: What is the velocity (magnitude and direction) of the boat relative to the shore?

B: If the river is 130 m wide, how long will it take to cross and how far downstream will the boat be then?

Example 4: A truck is approaching an intersection moving with a velocity of $15 \mathrm{~m} / \mathrm{s}$ [W]. A car is approaching the same intersection with a velocity of $10 \mathrm{~m} / \mathrm{s}$ [N$]$. What is the relative velocity of the truck with respect to the car at the moment their individual velocities were measured? Include a labeled diagram.

