OHM'S LAW

$$R = \frac{V}{I}$$
 or $V = IR$ or $I = \frac{V}{R}$

where R is resistance measured in Ohms [Ω] V is voltage measured in Volts [V] and I is electric current measured in Amperes [A]

RESISTANCE

$$R = \rho \frac{L}{A}$$

where ρ is resistivity of the material measured in Ohm meter [$\Omega \cdot m$] A is the cross-sectional area of the conductor measured in meter squared [m²] and L is the length of the conductor measured in meters [m]

ELECTRIC POWER

$$P = IV = I^2R$$

where P is power measured in Watts [W] I is electric current measured in Amperes [A] V is voltage measured in Volts [V] and R is resistance measured in Ohms $[\Omega]$

RESISTORS CONNECTED IN SERIES

- Equivalent (total) resistance in a circuit with resistors in series is the sum of all individual resistances.
- Same current goes through every resistor.

$$R_{eq} = R_1 + R_2 + R_3 + \dots + R_n$$

RESISTORS CONNECTED IN PARALLEL

Equivalent (total) resistance in a circuit with resistors in parallel is calculated by finding the sum of reciprocal values of all resistors followed by reciprocating that sum.

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$
$$R_{eq} = \frac{1}{\frac{1}{R_{eq}}}$$

Same voltage is applied across each resistor.

RESISTORS CONNECTED IN SERIES AND IN PARALLEL

> Most circuits have resistors wired in series as well as in parallel

Example : Find the equivalent resistance in the circuit below. If the battery provides 12.0 V of voltage, what is the current through the 10Ω resistor?

KIRCHHOFF'S RULES

Example: Find the equivalent resistance in the circuit given that the current through the 8.0 Ω is 1.25 A.

