OHM'S LAW

$$
R=\frac{V}{I} \quad \text { or } \quad V=I R \quad \text { or } \quad I=\frac{V}{R}
$$

where R is resistance measured in Ohms [Ω]
V is voltage measured in Volts [V]
and I is electric current measured in Amperes [A]

RESISTANCE

$$
R=\rho \frac{L}{A}
$$

where ρ is resistivity of the material measured in Ohm meter $[\Omega \cdot \mathrm{m}]$
A is the cross-sectional area of the conductor measured in meter squared [m^{2}]
and L is the length of the conductor measured in meters [m]

ELECTRIC POWER

$$
P=I V=I^{2} R
$$

where P is power measured in Watts [W]
I is electric current measured in Amperes [A]
V is voltage measured in Volts [V]
and R is resistance measured in Ohms [Ω]

RESISTORS CONNECTED IN SERIES

$>$ Equivalent (total) resistance in a circuit with resistors in series is the sum of all individual resistances.
$>$ Same current goes through every resistor.

$$
R_{e q}=R_{1}+R_{2}+R_{3}+\cdots+R_{n}
$$

RESISTORS CONNECTED IN PARALLEL

$>$ Equivalent (total) resistance in a circuit with resistors in parallel is calculated by finding the sum of reciprocal values of all resistors followed by reciprocating that sum.

$$
\begin{gathered}
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots+\frac{1}{R_{n}} \\
R_{e q}=\frac{1}{\frac{1}{R_{e q}}}
\end{gathered}
$$

Same voltage is applied across each resistor.

RESISTORS CONNECTED IN SERIES AND IN PARALLEL

> Most circuits have resistors wired in series as well as in parallel

Example : Find the equivalent resistance in the circuit below. If the battery provides 12.0 V of voltage, what is the current through the 10Ω resistor?

8.0Ω

KIRCHHOFF'S RULES

1. Junction rule: The sum of the magnitudes of the currents directed into a junction equals the sum of magnitudes of the currents directed out of the junction.
2. Loop rule: Around any closed-circuit loop, the sum of potential drops equals the sum of potential rises.

Example: Find the equivalent resistance in the circuit given that the current through the 8.0Ω is 1.25 A .

