FREEE FALL AND PROJECTILE MOTION

Quantity	Free Fall	Projectile Motion
Initial velocity		
Acceleration		
Horizontal motion	9,28	
Vertical motion		
Velocity at maximum height	102±	
Propulsion		
Air resistance		
	Kinematics equations	
Slope on a position-tine	ne graph is	
> Slope on a velocity-tim	ne graph is	
	of the velocity-time graph is	

1. a)Consider an object A thrown vertically with velocity 40m/s [up] and an object B that is thrown 1.03 seconds after object A. At what velocity [up] must be the object B thrown in order to reach its maximum height at the same instant as the object A?	
b) How does the maximum height of object A compare to the maximum height of object B?	
c) How would your answer from a) change if the object B was thrown at an angle above the horizontal?	

- 1. List all given information. Recall: acceleration is only in the vertical direction. Horizontal motion is at constant velocity.
- 2. Sketch a labelled diagram that shows the path of the projectile.
- 3. Sketch a separate diagram of the initial velocity vector. Label the horizontal and vertical vector components of the initial velocity vector. Label the given angle.
- 4. Find the horizontal and vertical component of the initial velocity.
- 5. When looking for maximum height and time needed the maximum height use the vertical component of the initial velocity.
- 6. When looking for the range use the horizontal component of the initial velocity and total time in the air.
- 7. Total time in the air is twice the time needed to reach the maximum height if and only if the projectile lands at the same level it was launched from.
- 8. Total time in the air for any other scenario is time needed to reach the maximum height + time to free fall from the maximum height to the landing level.

9. Practice and ask questions.

10. In the space below list the formulae you frequently use:

Example1: An object is thrown from the ground with initial velocity of 80m/s [40° above horizontal]. Find its maximum height and its range.				
Given:				
Diagram:	Vector diagram of v _i :	Vector components of v _i :		
Time to reach maximum height:				
Maximum height:				
Time in the air:				
Range:				
Example 2: In your notebook solve the above problem with a projectile launched 200 m above the ground level. Assume that the projectile lands on the ground. Compare your results with ex. 1.				