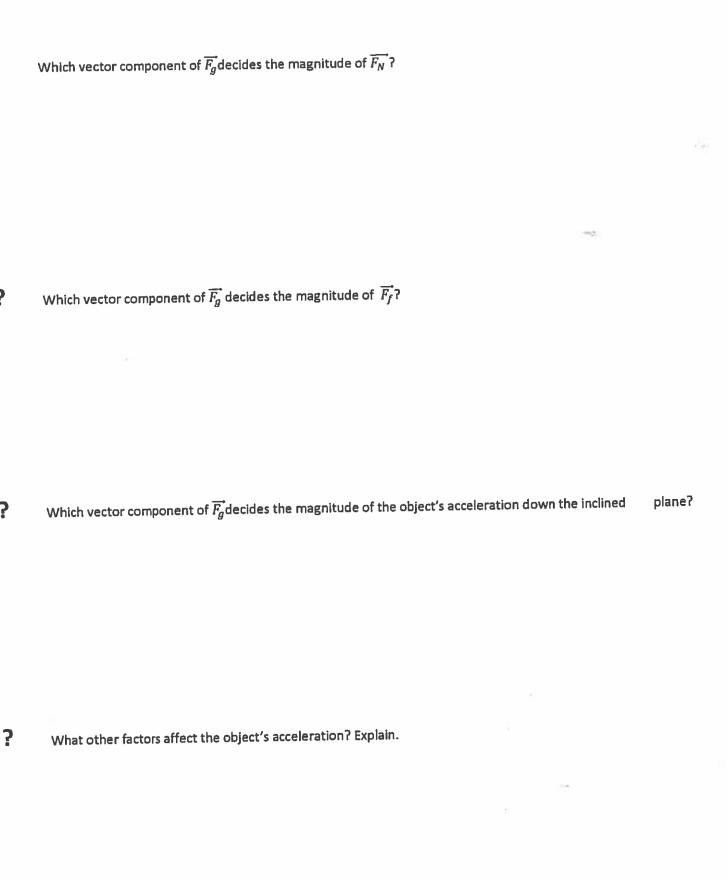

FORCES ON AN INCLINED PLANE

- $\overrightarrow{F_N}$, $\overrightarrow{F_f}$ and $\overrightarrow{F_g}$ are acting on an object unless stated otherwise
- $\overrightarrow{F_N}$ is always perpendicular to the surface of contact ($oldsymbol{\perp}$)
- $\overrightarrow{F_f}$ is always parallel to the surface of contact (//) and it always opposes the motion

 $\overrightarrow{F_g}$ is always directed to the center of the Earth = strictly vertically down

1. How does the angle of the inclined plane affect the magnitude of the $\overline{F_{g//}}$?

2. How does the angle of the inclined plane affect the magnitude of the $\overrightarrow{F_{g\perp}}$?

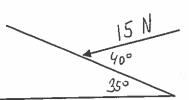

3.	What angle of an inclined plane is desirable and reasonable in real-life situations? Give examples.

4. Consider three different inclined planes. Sketch $\overline{F_{g/f}}$ and $\overline{F_{g\perp}}$ for three different inclined planes. How do the magnitude of $\overline{F_{g\perp}}$ and $\overline{F_{g/f}}$ compare for the three different scenarios? At what angle is the magnitude the same? Make calculations for a 25.0-kg object.

	Scenario 1	Scenario 2	Scenario 3
Degree of inclination	15°	45°	65°
Magnitude of $\overrightarrow{F_{g\perp}}$			
Magnitude of $\widehat{F_{g//}}$	<u>g</u> o		
Practical use			

Free-Body Diagrams for objects on inclined planes:

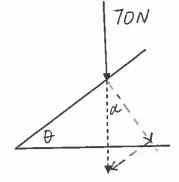
- > Object is not drawn on an angle
- > The parallel and perpendicular components of the force of gravity are not drawn
- > The fact that the normal force and force or gravity vectors are NOT collinear is the indicator that the object lies on an inclined plane
- > It is a good habit to draw two diagrams; an FBD and a diagram that includes the inclined plane as well as the parallel and perpendicular components of the force of gravity


- 5. What do the magnitudes of $\overrightarrow{F_{net}}$, $\overrightarrow{F_{g/f}}$, $\overrightarrow{F_f}$ and $\overrightarrow{F_N}$ relative to each other have to be in order for a stationary object to:

 Draw FBDs that show the relative magnitude of all forces.
 - a) Remain at rest?

b) Start sliding down the plane?

Find components of the following forces acting on an inclined plane at an angle. One component has to be parallel (//) with the inclined plane and the other component has to be perpendicular to the surface of the inclined plane (\bot). (Hint: Construct a right triangle that has the given vector as a hypotenuse and place the right angle at the inclined plane)


a)

b)

c) Note that $\theta=\alpha$ whenever the force acting on the inclined plane is strictly vertical

45 N 20° 60°

