PHYSICS	12	ASSIGNMENT #5

Name:

Centripetal Force and Gravitational Potential Energy not on Earth

/27

1. Sketch a labeled graph that shows how the gravitational field of a body varies with distance from its center. Describe the relationship between the strength of the gravitational field and the distance

2. Oberon is a satellite of the planet Uranus. It has an orbital radius of 5.83×10^8 m and an orbital period of 1.16×10^6 s. What is the mass of Uranus?

3. A planet of radius 7.0 $\times 10^7$ m has a gravitational field strength of 68/N kg at its surface. What is the period of a satellite orbiting this planet at a radius of 1. 4 $\times 10^8$ m (twice the planet's radius)?	
4. On Earth, the maximum speed without skidding for a car on a level circular curved track of radius 40 m is 15 m/s. This car and track are then transported to another planet for the Indy Galactic 500. The maximum speed without skidding is now 8.4 m/s. What is the value of the acceleration due to gravity on this other planet?	

The equation Ep = mgh, in which g is 9.8 m/s ² , cannot be used for calculating the gravitational potential energy of an orbiting Earth satellite because	
6. A 1570 kg satellite orbits a planet in a circle of radius 5.94 x10 ⁶ m. Relative to zero at infinity the gravitational potential energy of this satellite is -9.32 x10 ¹¹ J. What is the mass of the planet?	a

7. A 120 kg astronaut stands on the surface of an asteroid of radius 600 m. The astronaut leaves the surface with 15 J of

kinetic energy and reaches a maximum height of 300 m above the surface. What is the mass of the asteroid?

