ELECTRIC POTENTIAL ENERGY AND ELECTRIC POTENTIAL

Alternative names: potential difference, voltage, potential drop, change in potential

NET POTENTIAL = $\sum V$

Units:

ELECTRIC POTENTIAL INSIDE A BATTERY

 \mathbf{F}_{e} causes the positive charge to move to the negative plate (Coulomb's Law). This means work is done to move the charge.

W = Fd when F and d are parallel vectors

As
$$F_e = Eq$$
 then it follows that $W = Eqd$

- If q is negative, work is negative (negative charge moves opposite to the direction of the electric field)
- > If g is positive, work is positive
- We say a battery has a voltage (potential drop or potential difference)

 $\Delta V = Ed$ That is, voltage = electric field multiplied by distance between parallel plates ! this formula can be used only when electric field is constant!

Work done when a charge moves through a potential difference:

$$\mathbf{W} = \mathbf{q}_{\Delta} \mathbf{V}$$

Example 1:A 0.16C charge is moved in an electric field from a point with a potential of 25V to another location with a potential of 95 V. How much work was done to move this charge?

Example 2: What is the magnitude of the voltage between two points A and B if 0.00025 N of force is required to move the 1.6 μ C charge from A to B, a distance of 0.50 m?
Example 3: What is the magnitude and direction of the electric field created by the plates shown below?
NOTE: V/m = N/C for parallel plates
Practice: 1. Find the potential difference between two parallel plates separated by 0.0006 m and creating an electric field of 3.0 \times 10 6 V/m down.

2. How strong is the electric field between 2 parallel plates that are separated by 1.5 cm and connected to a circuit with 25000 voltage?
3. How much work needs to be done to move a 3.6 $ imes$ 10^5 C charge to a point in the electric field that has voltage higher by 12V?
4. If moving a positive charge from a location with potential 20V to another location with potential 80V
resulted in $1.92 imes 10^{-17} ext{J}$ of change in EPE, what is the magnitude of the charge?