PHYSICS 12 ## **Electric Charge and Electric Force – Practice Problems** | Name: | | |--|-------| | Full solutions to the problems below can be submitted for additional marks. | 35 | | 1. What is the magnitude of the electric force of attraction between an iron nucleus ($q = +26e$) and its inne electron if the distance between them is 1.5×10^{-12} m? | rmost | | | | | | | | | | | | | | 2. Two charged balls are 15.0 cm apart. They are moved, and the force on each of them is found to have b tripled. How far apart are they now? | een | | | | | 3. Two small non-conducting spheres have a total charge of 90.0 μ C. When placed 1.16 m apart, the force each exerts on the other is 12.0 N and is repulsive. What is the charge on each? What if the force were attractive? | |--| | | | | | | | | | | | 4. Determine the quantity of charge on a a plastic tube which has been rubbed with animal fur and gained 3.8x10 ⁹ electrons. | | b a vinyl balloon which has been rubbed with animal fur and gained 1.7×10^{12} electrons. | | c an acetate strip which has been rubbed with wool and lost 7.3×10^8 electrons. | | 5. Two vinyl balloons with an identical charge are given a separation distance of 52 cm. The balloons experience a repulsive force of 2.74x10 ⁻³ N. Determine the magnitude of charge on each one of the balloons. | |---| | | | | | | | | | 6. Two different objects are given charges of +3.27 μ C and -4.91 μ C. What separation distance will cause the force of attraction between the two objects to be 0.358 N? | | | | | | | 7. An electron has a mass of 9.11×10^{-31} kg. In the Bohr model of the hydrogen atom, the electron was viewed as orbiting the lone proton of the nucleus; the centripetal force requirement was met by the electrical attraction between the oppositely charged proton and electron. The radius of orbit was 5.29×10^{-11} m. Use circular motion and electrostatic principles to determine the speed at which the electron moves as it orbits the proton.