ELECTRIC CHARGE AND ELECTRIC FORCE

In the world of static electricity ...

oppositely-charged objects attract

objects with like charges repel

Coulomb's Law

= the fundamental law of force between two charged particles. It states that like charges repel one another and opposite charges attract one another.

AND

$$F_e = \frac{k \cdot |q_1| |q_2|}{r^2}$$

> Charge can either be positive or negative

k = Coulumb's constant =
$ q_1 $ = magnitude of charge one
q ₂ = magnitude of charge two
r = separation distance between the two charges (straight line) in meters
F _e = electric force
Units of k:
Units of q ₁ and q ₂ :
Units of F _e :

unit charge =

Example: Find the electric force (magnitude and direction) on q_1 due to q_2 if the charges are placed as shown below.

Assignment: textbook p 536 #1-3, p 542#7 – Explain through a diagram.

ELECTRIC FIELD

Single charge	

> Electric dipole. Electric dipole = two charges of equal magnitude but opposite charge.

Two identical charges (magnitude and charge) Positive:	Negative:
Electric field between two oppositely charged parallel plate	es
Electric field lines:	
Imagine placing a positive unit charge in the vicinity of the given represent the electric force the unit charge would experience. > Electric field lines are always directed away from the positi > The stronger the charge, the more lines are drawn.	

➤ Keep in mind that electric field is 3D so it is more like a sphere rather than a circle.

> Electric field is stronger where the lines are closer to each other.

Electric Force - Practice

1. Determine the electric force (magnitude and direction) on a point charge q1 (-40 μ C) due to q2(+55 μ C) and q3 (-85 μ C).

2. Determine the electric force	(magnitude and direction) on $\ensuremath{q_2}$ (due to q_1 and q_3 .	

3. . Determine the electric force (magnitude and direction) on a point charge q_1 (-80 μ C) due to q_2 (+15 μ C) and q_3 (-85 μ C).

4. Find the charge on q_1 provided that q_1 is 25cm away from $q_2 (q_2$ =40) 465N.	uC)and experiences repulsive electric force of
5. Consider point charges of $35\mu C$ and $-89\mu C$. What is the distance of	separation between two point charges if the
attractive force experienced by one of the charges is 57N?	
attractive force experienced by one of the charges is 57N?	
attractive force experienced by one of the charges is 57N?	
attractive force experienced by one of the charges is 57N?	