
Name:						
Assignment #4: Centripetal Force and Gravitational Potential Energy not on Earth						
1. Sketch a labeled graph that shows how the gravitational field of a body varies with distance from its center. Describe the relationship between the strength of the gravitational field and the distance						
2. Oberon is a satellite of the planet Uranus. It has an orbital radius of 5.83×10^8 m and an orbital period of 1.16×10^6 s. What is the mass of Uranus?						

of radius 40 m is 15 m/s. This car and track are then transported to another planet for the Indy Galactic 500. The maximum speed without skidding is now 8.4 m/s. What is the value of the acceleration due to

gravity on this other planet?

5. The equation Ep = mgh, in which g is 9.8 m/s^2 , cannot be used for calculating the gravitational potential energy of an orbiting Earth satellite because					
6. A 1570 kg satellite orbits a planet in a circle of radius 5.94×10^6 m. Relative to zero at infinity the gravitational potential energy of this satellite is -9.32×10^{11} J. What is the mass of the planet?					
7. A 120 kg astronaut stands on the surface of an asteroid of radius 600 m. The astronaut leaves the surface with 15 J of kinetic energy and reaches a maximum height of 300 m above the surface. What is the mass of the asteroid?					