PHYSICS 11

Answers

NORMAL FORCE (Practice Questions)

1. Determine the magnitude and direction of the normal force acting on a 15.0 kg object that rests on a horizontal frictionless surface while being acted upon by a force of push 45 N downwards. Include a labeled situation diagram.

$$F_N = F_9 + F_{push}$$

= $m_9 + 45$
= $(15.0)(9.8) + 45$
= $192N$
 $= 1.9 \times 10^2 N [U]$.

2. Determine the normal force experienced by a 2.0 kg object that is being pulled upwards with force of 12.6 N while moving along a leveled surface at constant speed.

he hon

$$FN = Fg - Fpull$$

= $mg - 1a.6$
= $19.6 - 12.6$
= $7.0N$
 $FN = 7.0N$ [U].

3. Determine the normal force experienced by 10.0 kg object that is being pulled upwards with force 120 N while sliding along a horizontal surface.

whom

- 7. What will be the normal force experienced by an 18 kg crate that is being pushed up an inclined plane with an angle of inclination of 32°.
 - A) The pushing force of 230 N is parallel with the inclined plane.

$$F_N = F_{9\perp}$$

= (18)(9.8)(cos 32°)
= $\frac{1}{9}$. $F_N = 1.5 \times 10^2 N$ [$F_N = 1.5 \times 10^2 N$] in clined plane)

B) The pushing force of 230 N is up the inclined plane at an angle of 20° above the incline's surface.

the incl. plane

4. What is the acceleration of the object in question 3?

4. What is the acceleration of the object in question 3?

$$\vec{a} = \vec{F}_{ne} + \vec{F}_{ne}$$

5. Determine the normal force experienced by 10.0 kg object that is being pulled with force yeth force of 120 N 50° above horizontal while sliding along a horizontal surface. mobion

$$\frac{1}{2} = \frac{1}{4} = \frac{1}$$

Note: FN = 6.1 N [up] regardless of Ft being present.

- 8. Will a 5.6 kg object experience a normal force when it is placed on a horizontal surface? If yes, find the magnitude of the normal force. If not, explain why and justify your answer.
 - A) While being pulled with F₁= 25 N [R40°U]?

B) While being pulled with F₂= 13 N [L 60°U]?

$$F_{N} = F_{g} - F_{2}$$

$$= m_{g} - 13 \cdot \sin 60^{\circ}$$

$$= 44N$$

C) While being pulled with F_1 and F_2 simultaneously?

Finand F₂ simultaneously?
$$F_{N} = F_{3} - F_{1} - F_{2} + F_{3} - F_{4} + F_{5} - F_{5} F_{5} -$$

D) What magnitude of F₁ would lift the object if the second force remained the same and the direction of F₁ was also the same? Justify your answer.

To lighther object
$$F_{2\perp} + F_{1\perp} \ge F_g$$

 $F_{1\perp} = F_g - F_{2\perp}$
 $F_{1} \cdot \sin 40^\circ = mg - 13 \cdot \sin 60^\circ$
 $F_{1} = (5.6)(9.8) - 13 \cdot \sin 60^\circ$
 $\sin 40^\circ$

F. = 67.86 .- N