PHYSICS 11

MATH FOR PHYSICS III.

VECTOR = an oriented ray = a physical quantity that has a magnitude AND direction

How can we express that a given quantity is a vector quantity?

➤ Use a scalar notation and add information about direction: Examples:

> Use vector notation and remember to include units: Examples:

Rules for vector notation:

- · Symbol for the quantity has an arrow
- Boxed brackets
- Comma separating the x- and the y-component
- Units follow the brackets

A .	P .
	i '
	l '
r e e e e e e e e e e e e e e e e e e e	l '
l i	l '
	l '
· ·	
4	t.
	ı
1	I '
1	t ·
	i e
	1
· ·	
1	1
i e	i e
•	
1	1
1	1
1	
· ·	
•	
l e e e e e e e e e e e e e e e e e e e	

GRAPHICAL REPRESENTATION OF VECTORS

Magnitude of a vector:		
		Use the Pythago
	A	Use "double abs

orean theorem

Example 1: Find the magnitude of $\vec{v} = [23,68] \, km/h$

Direction of a vector:

> Information about a vector's direction is included in vector notation:

Example 2: State the direction of $\vec{d} = [3, -5]m$.

Always include a sketch of a vector to state its direction correctly!

Use trigonometry to find the angle measure in degrees. Always consider a right angle at the x-axis.

> Information about a vector's direction is explicitly stated

- 15 km 45° S of W
- o 25 m E 30° N

$$\theta = \tan^{-1} \frac{|a_y|}{|a_x|}$$

$$\vec{a} = [a_x, a_y]$$

$$\|\vec{a}\| = \sqrt{a_x^2 + a_y^2}$$

Vector:

> Remember that the vector components are also vectors:

AN OPPOSITE OF A VECTOR:

OPERATIONS WITH VECTORS

- Addition
- Subtraction
- Scalar multiplication
- Dot product
- Cross product

VECTOR ADDITION

Example: a) Add $\vec{d}_1=[4,-3]{\rm m}$, $\vec{d}_2=[2,7]{\rm m}$ and $\vec{d}_3=[-5,2]{\rm m}$. State the final vector in vector notation.

1. Graphical = "head to tail"

b) Find the magnitude AND direction of the vector:

b) Find the magnitude AND direction of the vector:

SUBTRACTION OF VECTORS

- Subtracting a vector is identical to adding an opposite vector.
- The order in which vectors are subtracted matters.

Example 1: Subtract $\vec{d}_1 = [4, -3] \text{m} \text{ form } \vec{d}_2 = [2, 7] \text{m}$.

Example 2: Subtract $\vec{d}_2 = [2,7] \text{m} \text{ from } \vec{d}_1 = [4,-3] \text{m}$.

SCALAR MULTIPLICATION OF A VECTOR