

PHYSICS 11

KINEMATICS

Kinematics is a branch of physics that studies the motion of objects without considering the forces that caused the motion.

- Kinematics of an objects are the features or properties of motion of that object
- Kinematics is a branch of mechanics

Motion of an object can be described using words, diagrams, graphs, equations, vectors, and/or numbers with appropriate units.

Kinematics Quantities:

Name	Symbol	Base unit	S = scalar/V=vector
displacement	à	meta [m]	V
distance	d	meter [m]	S
speed	\(\nabla = \nabla \)	meter = [m]	S
velocity	~ - V	meter = [m.s]	V
acceleration	a and a	meter [m/z]	SandV
time	t	Slund = [S]	S

Displacement

- o Displacement describes how far and where an object is from the reference point or from its initial position.
- Displacement is a vector quantity.
- When an object moves without changing direction the magnitude of the displacement is distance.
- When an object moves while changing its direction the magnitude of the displacement vector may be very different from the distance covered.
- Displacement can be positive, negative or zero.

To calculate (change in) displacement:

	Positive displacement	Negative displacement	Zero displacement	
(A)	- the objects ends (further in positive	A)-theobjectends further in regative direction.	Ather object ends	
	further in positive direction	direction.	When it stouted	
(B)	- the object ends closes in negative direction	B-The object ench	from.	
9.	In negative direction	closes in positive	Bobject remains	
	د.		at rest	
	A di = 5 m [5]	$A) d_i = -2mLSJ = 2mLNJ$ $C = -10 CSJ = 10m[N]$	A going tor a sold	109
	Ad = +10 m [3]	Ad = -8 m [5] = 8 m [N]	from your house and returning to your	home
	(1) di = -[3 m [5] = 13 m [N]	B di = 4 m [S]	1 Staying at home	
	Ad = +11 m [S] = 2m[N]	Ad = 1-4 = - 3 m [S]=3m[N	B Staying at home Sitting on a sofa	

Displacement versus Time Graphs (d/t graphs)

- Displacement of an object often changes over time.
- Displacement versus Time or Position versus Time graphs are often used to describe the motion of an object.
- When describing the motion of an object using a graph focus on the following:
 - 1. Units associated with the horizontal axis (time)
 - 2. Units associated with the vertical axis (displacement)
 - 3. Direction of the positive vertical axes (North N, South S, West W, East -E, down D, up U, right R, left L).
 - 4. Scale on the horizontal axis.
 - 5. Scale on the vertical axis.
 - 6. Initial = starting position of the object = how far and at what direction from the origin (or another reference point) was the object at the beginning of the time interval.
 - 7. Final = end position of the object = how far and at what direction from the origin (of another reference point) was the object at the end of the time interval.
 - 8. The length of the time interval:

At = 61 - ti

- 9. Any possible changes in the direction of motion.
- 10. Any possible changes in the steepness of the line: flat line = no motion, steep line = fast motion, shallow line = slow motion.
- 11. Change in displacement.

Descriptor Descriptor Value Value Velocity for the first 5 s R = Om/s[w] Initial displacement di = 4m [W] 7 = 6 = 3 = 1.5 m/s [W] Final displacement Velocity for t=(5,9)s of = 2m[W] Velocity for t=(9,16]s Initial time R====0.29 7/5 [W] 6: = Os Velocity for t=(16,21]s Final time ff= 2/s = 2m[E] Ad = 2-4=-2m[ki] Object at rest. y4; t=[0,5]s Change in displacement yu; t=[0,16]s Object moves in positive direction. Time interval Af = 21-0 = 21s Object moves in negative direction yu; & (16,217s Uniform or honnon-uniform uniform motion?

Further notes: Uniform motion = motion without changes in direction and for speed.

Non-uniform motion = motion with changes in lither speed or direction or both.

Velocity

- Velocity is the rate of change in displacement.
- Velocity is a vector quantity.
- Magnitude of the velocity vector is speed.
- Velocity can be positive, negative or zero (zero displacement = object at rest).

To calculate change in velocity:

To calculate final velocity:

$$\vec{N}_{i} = \vec{N}_{i} + ab = \vec{N}_{i} + ab$$

To calculate initial velocity:

$$\vec{N_i} = \vec{N_f} - at = \vec{N_f} - ast$$

- Velocity is slope of the line in a displacement versus time graph.
 - o Recall:

Slope =
$$m = \frac{rise}{run} = \frac{Ay}{Ax} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\vec{r} = \frac{rite}{run} = \frac{\Delta \vec{d}}{\Delta t} = \frac{\vec{d}_t - \vec{d}_i}{t_t - t_i}$$

from a d/t graph

AVERAGE VELOCITY

- Average velocity is the slope of the secant line on the displacement vs. time graph
- When describing average velocity, it must be clear over what time interval was the average

INSTANTANEOUS VELOCITY

- Instantaneous velocity is the slope of a tangent line on the displacement vs. time graph at a particular point (=time).
- Instantaneous velocity is measured at a particular instant in time.

When describing instantaneous velocity, it must be clear what at what time was the instantaneous velocity measured.

	*	