PHYSICS

Free Fall

1. If a rock takes 0.750 s to hit the ground after being thrown down from a height of 4.80, determine the rock's initial velocity. (2.7 m/s [down]).

G:
$$t = 0.750s$$

 $A = -9.8 \text{ m/s}^2$
 $A = -4.80 \text{ m}$
 $A = -4.80 \text{ m}$
 $A = -4.80 \text{ m}$

A:
$$d = Nit + \frac{1}{2}at^2$$
 $N_i = \frac{d - \frac{1}{2}at^2}{t}$

S: $N_i = \frac{4.40 - \frac{1}{2}(-9.6)}{t}$

S:
$$N_i = -4.80 - \frac{1}{2}(-9.8)(0.750)^2$$
0. 750

2. Having scored a touchdown, a football player spikes the ball in the end zone. If the ball was thrown down with an initial velocity of 2.0 m/s from a height of 1.75m, determine how long until it hits the ground. (0.43 s).

6:
$$\vec{R}_{i} = -2.0 \text{ m/s}$$

 $\vec{d} = -1.75 \text{ m}$
 $\vec{a} = -9.8 \text{ m/s}^{2}$

A:
$$N_f = N_i + at \rightarrow t = \frac{N_f - N_i}{a}$$

S: $t = \frac{\sqrt{38.3} - (-2.0)}{-9.8}$
 $t = 0.43s$

$$N_{f}^{2} = N_{i}^{2} + 2ad$$

$$= (-2.0)^{2} + 2(-9.8)(-1.75)$$

$$N_{f}^{2} = \sqrt{38.3}$$

$$N_{f}^{2} = -6.181699279 = 7$$

3. An elevator moving downward at 4.00 m/s experiences an upward acceleration of 2.00m/s² for 1.80 s. What is its velocity at the end of the acceleration interval and far has it travelled? (0.40 m/s [down], 4.0 m).

G:
$$\vec{N_i} = -4.00 \frac{m}{s}$$

 $\vec{A} = +2.00 \frac{m}{s^2}$
 $t = 1.80 s$

$$R: N_f = 2 [m/s] Down$$

$$d = 2 [m]$$

A:
$$\vec{N_f} = \vec{N_i} + \alpha t$$
 $d = \vec{N_i}t + \frac{1}{2}\alpha t^2$
S: $\vec{N_f} = (-4.00) + (2.00)(1.20) = (-4.00)(1.20) + \frac{1}{2}(2.00)(1.20)^2$
 $= -0.40 \text{ m/s}$ $= -3.96 \text{ m}$

6:
$$A = -27.0 \text{ m}$$

$$\hat{A} = -9.8 \text{ m/s}^{2}$$

$$\hat{N}_{i} = 0 \text{ m/s} \text{ [D]}$$

$$R: N_{f} = ?[\text{m/s}][D]$$

$$A: N_{f}^{2} = N_{i}^{2} + 2ad$$

S: =
$$0^2 + 2(-9.8)(-27.0)$$

 $N_f = \pm \sqrt{529.2}$
 $N_f = 23.0 \text{ m/s}$

A) Find its velocity just before it hits the ground. (2.0x10¹ m/s [down]).

4. The Drop Zone drops riders 27.0 m from rest before slowing them down to a stop. How fast are they moving

Find the time it takes to hit the ground. (2.0 s).

G:
$$d = -20.0 \text{ m}$$
 $a = -9.8 \text{ m/s}^2$
 $v = 0 \text{ m/s}[D]$
 $v = 0 \text{ m/s}[D]$
 $v = 0 \text{ m/s}[D]$
 $v = 0 \text{ m/s}[D]$

S: They are morning With speed of 23.0 m/s.

A:
$$N_f^2 = N_i^2 + 2aol$$
S: $= 0^2 + 2(-9.8)(-20)$
 $= \pm \sqrt{392}$
 $= 2.0 \times 10^7 \text{ m/s} [D]$

Acceleration due to gravity – summary

- Acceleration near the Earth's surface (unless specified otherwise).
- Vertical acceleration
- Does not depend on mass (you can read about the famous Galileo's experiment and the Tower of Pisa).

- The value of the acceleration due to gravity varies with geographic location.
- The acceleration due to gravity on Earth is approximately 9.8 m/s²[down].
- Symbol: \overrightarrow{g}
- Direction of the acceleration due to gravity is always towards the center of the Earth.
- When air resistance of a falling object can be neglected and no other forces except gravity act on an object the object is said to be falling in free fall.