ELECTRIC CIRCUITS AND OHM'S LAW

"Dear Mom and Dad, I'm running away from home to join the circuits."

1. If a battery delivers a current of 0.68mA, how much charge passes through a circuit powered by this battery in 1 hour?

2. How much time is needed for 500µC of charge to pass through a current of 0.2mA?

3. 10¹⁰ electrons pass through a wire in 1 minute. What is the current?

4. How many electrons per second pass through a wire carrying current of 20A?

Resistance

Resistance is the ratio of the voltage applied to a material to the current that passes through the material.	
High Resistance = only a small portion of charge is able to pass through the material	
Low Resistance = most of the charge passes through the material	
Symbol: Units:	
Resistor = material or a device that resist the flow of charges	
Reduces the electric current	
> Symbol in an electric circuit:	
Resistivity = property unique to every material. Same material will have same resistivity.	
Resistance = given by resistivity and by the size and shape of the material.	
Small resistance:	Large resistance:
Equivalent Resistance = Net Resistance = $\sum R = R_{eq}$	
Ohm's Law	

Resistors in Series

- > If one resistor is disconnected the flow of the current stops to flow to all the other resistors
- > Total voltage is equal to the sum of the voltages across each resistor
- > Same current flows through each resistor
- Ammeter must be connected in series

$$R_{eq} = R_1 + R_2 + \dots + R_n$$

Resistors in Parallel

- > The current from a source splits into separate paths
- > When one resistor is disconnected the current still flows through the rest of the resistors
- > Same voltage is applied across each resistor
- Voltmeter must be connected in parallel

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

Kirchhoff's Rules

- 1. At any node, sum of incoming current equal the sum of outgoing current.
- 2. Sum of potential differences (or voltage) across all elements in a loop is zero.

MURPHY'S LAW

What can go wrong, will go wrong. Essentially, the laws of nature always work, whether we are paying attention or not.

(Equipment blows to protect fuses.)

(Interchangeable parts aren't & fail-safes don't.)

Mrs MURPHY'S COROLLARY

Murphy is too much of an optimist.