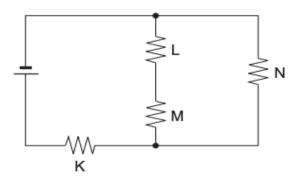

## **ELECTRIC CIRCUITS**

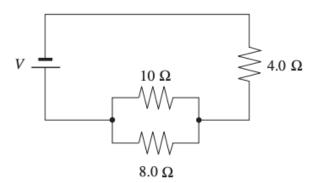
1.


What value of R in the circuit shown below will cause the parallel combination (10  $\Omega$  and R) to dissipate the same power as the 4.0  $\Omega$  resistor?



- Α. 0.26 Ω
- B. 2.9 Ω
- C.  $6.0 \Omega$
- D. 6.7 Ω

2.

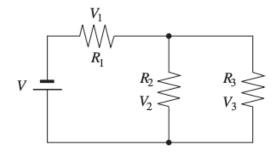

All the resistors shown in the circuit have the same resistance value.



Which resistor dissipates the most heat?

- A. K
- B. L
- C. M
- D. N

3. A resistor is added in parallel to the  $4.0 \Omega$  resistor shown in the diagram below.

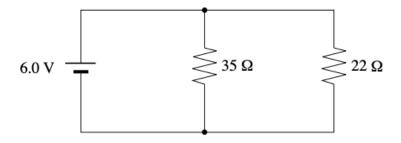



What happens to the power dissipated by the 8.0  $\Omega$  resistor and by the 4.0  $\Omega$  resistor?

|    | $P_{8.0~\Omega}$ | $P_{4.0~\Omega}$ |
|----|------------------|------------------|
| A. | decreases        | increases        |
| B. | decreases        | decreases        |
| C. | increases        | increases        |
| D. | increases        | decreases        |

## 4.

Which of the following statements is true for the electric circuit shown below, regardless of the resistors used?




- A.  $V_1 = V_2$

- B.  $V = V_2 + V_3$ C.  $V = V_1 + V_3$ D.  $V = V_1 + V_2 + V_3$

## 5.

What current would be drawn from the power supply in the circuit shown below?



- A. 0.11 A
- B. 0.17 A
- C. 0.27 A
- D. 0.44 A