I = or + amount of charge [C]time interval [57

from home to join the circuits

1. If a battery delivers a current of 0.68mA, how much charge passes through a circuit powered by this battery in 1 hour?

$$R: q = 2[C]$$

$$A: \overline{I} = \frac{q}{\Delta t} \rightarrow q = \overline{I} \Delta t$$

S: 2 C of charge passes through the circuit

2. How much time is needed for 500μC of charge to pass through a current of 0.2mA?

2. How much time is needed for
$$500\mu$$
C of charge to pass through a current of 0.2mA ?

G: $9 = 500\mu$ C = 0.0005 ac

A: $T = \frac{9}{At}$ 3 $t = \frac{9}{T}$ S: $\frac{3}{1}$ s are needed.

 $\frac{1}{T} = 0.1 \text{ mA} = 0.0002 \text{ A}$

3. 10¹⁰ electrons pass through a wire in 1 minute. What is the current?

3:
$$N = 10^{10} e^{-}$$

At = 1 min = 60s
S: $I = \frac{Ne}{At} = \frac{10 \cdot (1.60 \times 10^{-10})}{60} = 2.6 \times 10^{-10}$

G:
$$I = doA$$

$$I = \frac{do}{dt}; \quad q = N \cdot e \quad \Rightarrow \quad I = \frac{Ne}{dt} \Rightarrow N = \frac{IAt}{e}$$

$$At = Is$$

R:
$$N = \frac{2}{1.6 \times 10^{-19}}$$
 S: $N = \frac{(20)(1)}{1.6 \times 10^{-19}} = 1.25 \times 10^{20}$
A: $O = 1.6 \times 10^{-19}$ S: $1 \text{ (mr. 1.3)} \times 10^{20} \text{ p}$ passes through.

Resistance

Resistance is the ratio of the voltage applied to a material to the current that passes through the material.

High Resistance = only a small portion of charge is able to pass through the material

Low Resistance = most of the charge passes through the material

Symbol: R Units: Ohm [52

Resistor = material or a device that resist the flow of charges

- > Reduces the electric current
- > Symbol in an electric circuit:

Resistivity = property unique to every material. Same material will have same resistivity. If the Same T.

Resistance = given by resistivity and by the size and shape of the material.

Small resistance:	
A D	

R-J. A

Equivalent Resistance = Net Resistance = $\sum R = R_{eq}$ = to tal resistance

Ohm's Law

$$R = \frac{V}{I}$$

Resistors in Series

- If one resistor is disconnected the flow of the current stops to flow to all the other resistors
- > Total voltage is equal to the sum of the voltages across each resistor
- > Same current flows through each resistor

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

· This circuit is called a voltage divider.

$$R_{eq} = R_1 + R_2 + \dots + R_n$$

Resistors in Parallel

- > The current from a source splits into separate paths
- > When one resistor is disconnected the current still flows through the rest of the resistors
- > Same voltage is applied across each resistor
- > Voltmeter must be connected in parallel

- · I = I2 if and only if R1=R2
- · V = V2 4
- Reg in the circuit decreases with more resistors in pairallel

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

- 1. A current I entering A has three possible paths. Hence it divides into l_1 , l_2 , and l_3 .
- 2. Points such as A, B, C, and D are called

nodes or Thuckons

3. A round trip such as

 $A \rightarrow B \rightarrow C \rightarrow A \text{ or } A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$

are called 100PS

Kirchhoff's Rules

- 1. At any node, sum of incoming current equal the sum of outgoing current.
- 2. Sum of potential differences (or voltage) across all elements in a loop is zero.

MURPHY'S LAW

What can go wrong, will go wrong.

Essentially, the laws of nature always work, whether we are paying attention or not.

(Equipment blows to protect fuses.)
(Interchangeable parts aren't & fail-safes don't.)

Mrs MURPHY'S COROLLARY

Murphy is too much of an optimist.