ELECTRIC CIRCUITS 1

1.

What value of R in the circuit shown below will cause the parallel combination (10 Ω and R) to dissipate the same power as the 4.0 Ω resistor?

- Α. 0.26 Ω
- B. 2.9Ω
- $C_{\rm s} = 6.0 \ \Omega$
- $D_{\rm c} = 6.7 \ \Omega$

2.

All the resistors shown in the circuit have the same resistance value.

Which resistor dissipates the most heat?

- A. K
- B. L
- C. M
- D. N

3. A resistor is added in parallel to the $4.0\,\Omega$ resistor shown in the diagram below.

What happens to the power dissipated by the 8.0 Ω resistor and by the 4.0 Ω resistor?

	$P_{8.0\Omega}$	$P_{4.0\Omega}$
A.	decreases	increases
B.	decreases	decreases
C.	increases	increases
D.	increases	decreases

4.

Which of the following statements is true for the electric circuit shown below, regardless of the resistors used?

- A. $V_1 = V_2$
- $\mathbf{B}. \quad V = V_2 + V_3$
- $\mathbf{C}_{*} = V_{1} + V_{3}$
- D. $V = V_1 + V_2 + V_3$

5.

What current would be drawn from the power supply in the circuit shown below?

- A. 0.11 A
- B. 0.17 A
- C. 0.27 A
- D. 0.44 A