1. Describing Motion Using a Displacement versus Time Graph

- Assume a one-to-one scale where time is measured in seconds and displacement is measured in m with South considered positive.

- Label the graph and its axes. Determine the following:

Time taken		Average velocity	
Time intervals (not instants) when the object is at rest		Average velocity during t=[0,7]s	
Initial displacement		Average velocity during t=[7,20]s	
Final displacement		Average velocity during t=[21,30]s	
Change in displacement	Instantaneous velocity at t=7.5 s		
Distance travelled		Instantaneous velocity at t=20 s	

2. Describing Motion Using a Displacement versus Time Graph

- Assume a one-to-one scale where time is measured in seconds and displacement is measured in m with left considered positive.

- Label the graph and its axes.

Determine the following:

Time taken		Average velocity	
Time intervals (not instants) when the object is at rest		Average velocity during t=[0,7]s	
Initial displacement		Average velocity during t=[7,20]s	
Final displacement		Average velocity during t=[21,30]s	
Change in displacement	Instantaneous velocity at t=7.5 s		
Distance travelled		Instantaneous velocity at t=20 s	

3. Describing Motion Using a Displacement versus Time Graph

- Assume a one-to-one scale where time is measured in seconds and displacement is measured in m with up considered positive.

- Label the graph and its axes.

Determine the following:

Time taken		Average velocity	
Time intervals (not instants) when the object is at rest		Average velocity during t=[0,5]s	
Initial displacement		Average velocity during t=[5,12]s	
Final displacement		Average velocity during t=[20,30]s	
Change in displacement	Instantaneous velocity at t=7.5 s		
Distance travelled		Instantaneous velocity at t=20 s	

4. Describing Motion Using a Displacement versus Time Graph

- Assume a one-to-one scale where time is measured in seconds and displacement is measured in m with west considered positive.

- Label the graph and its axes.

Determine the following:

Time taken		Average velocity	
Time intervals (not instants) when the object is at rest		Average velocity during t=[0,7]s	
Initial displacement		Average velocity during t=[7,20]s	
Final displacement		Average velocity during t=[21,30]s	
Change in displacement	Instantaneous velocity at t=9 s		
Distance travelled		Instantaneous velocity at t=20 s	

5. Describing Motion Using a Displacement versus Time Graph

- Assume a one-to-one scale where time is measured in seconds and displacement is measured in m with east considered positive.

- Label the graph and its axes.

Determine the following:

Time taken		Average velocity	
Time intervals (not instants) when the object is at rest		Average velocity during t=[0,5]s	
Initial displacement		Average velocity during t=[10,20]s	
Final displacement		Average velocity during t=[15,30]s	
Change in displacement	Instantaneous velocity at t=4s		
Distance travelled		Instantaneous velocity at t=15 s	

