- 1. Describing Motion Using a Displacement versus Time Graph
- Assume a one-to-one scale where time is measured in seconds and displacement is measured in m -with South considered positive.

2. Describing Motion Using a Displacement versus Time Graph

• Assume a one-to-one scale where time is measured in seconds and displacement is measured in m with left considered positive.

Time a Aplican	0.0	A	7/
Time taken	33s	Average velocity	7/32 = 0.21 m/s [L]
Time intervals (not	10.01.6	Average velocity	-1
instants) when the	hone	during t=[0,7]s	Navn = -= -0.14 M/s [L]
object is at rest			Navy = -1 = -0.14 m/s [L] = 0.14 m/s [R]
Initial displacement	8m[L]	Average velocity	> 4 m/-
	,	during t=[7,20]s	Navy = 13 - 0.31 1/2[L]
Final displacement	15 m [L]	Average velocity	3 / 1 / 1
	10 11 0 - 3	during t=[21,30]s	ray = 4 = 0.25 \$ [L]
Change in	1= 15-8=7m[L]	Instantaneous	2
displacement		velocity at t=7.5 s	Nins = = 1/4 = 0,25 m/s LL
Distance travelled	C 11 15	Instantaneous	-13 100 m/ F/7
	6+11+13+15	velocity at t=20 s	Nins = -13 = -1.86 m/s[L]

- 3. Describing Motion Using a Displacement versus Time Graph
- Assume a one-to-one scale where time is measured in seconds and displacement is measured in m_v with up considered positive.

Determine the	TOHOWING.			
Time taken	33 S	Average velocity	Om/s[U]	
Time intervals (not	+= 1910% F14106	Average velocity		
instants) when the	t=[9,10]s,[14,15]s and [29,30]s	during t=[0,5]s	Navg = 15[W]	
object is at rest	ma [29,30]s		and ista	
Initial displacement	ר ח מ	Average velocity	Raun = -2.5 -0.36	m/ FI-
	8m [u]	during t=[5,12]s	Many 7 -0.36	18 CUJ
Final displacement	8m CUJ	Average velocity	-3	-MIT
	omcol	during t=[20,30]s	Navy = 3 =	-0.375 m/sl
Change in	Ad = Om[u]	Instantaneous	-5 +12-m/	11.7
displacement	TM - OWCAT	velocity at t=7.5 s	$\left \frac{-5}{9} = -1.25 \% \right $	[647
Distance travelled	6+5+3+7.5+3.5	Instantaneous	-8 4	m, rut
	6+5+3+7.5+3.5 = 25m	velocity at t=20 s	$\left \frac{-8}{10} = \frac{4}{5} = -0.80$	1/3673
·			- 0 2	p m/s [D]
			- (/()	Ly γ

4. Describing Motion Using a Displacement versus Time Graph

 Assume a one-to-one scale where time is measured in seconds and displacement is measured in m^{-/-} with west considered positive.

5. Describing Motion Using a Displacement versus Time Graph

 Assume a one-to-one scale where time is measured in seconds and displacement is measured in m, with east considered positive.

