

PHYSICS 11

CIRCUIT ELECTRICITY

1.

Consider the circuit element shown below.

The voltage across the resistor increases from V to 2V. The resistance remains the same. By what factor has the current changed?

A.
$$\frac{1}{4}$$

$$T = \frac{V}{R}$$

$$T_1 = \frac{V_1}{R_1}$$

$$T_2 = \frac{V_2}{R_1} = \frac{2V_1}{R_1} = 2 \cdot \frac{V_1}{R_1} = 2 \cdot T_1$$

is The current changed by a factor of 2

A 12.0 V power supply is connected to 4 resistors as shown.

$$R_{1} = 15.0 \Omega$$

$$R_{2} = 10.0 \Omega$$

$$R_{3} = 25.0 \Omega$$

$$R_{4} = 30.0 \Omega$$

$$V_{4} = ?$$

What is the potential difference, V_4 , across the 30.0 Ω resistor?

A. 2.12 V
$$V_4 = V_3 = 12 - V_2 - V_1$$

B. 4.24 V

$$\frac{1}{107} = \frac{V_B}{R_{ey}} = \frac{12.0}{38.64} = \frac{0.31 \text{ A}}{20.31}$$

$$V_{1} = \overline{1}_{1} R_{1}$$

$$= (0.31)(15)$$

$$= (0.31)(10)$$

$$= 4.25 V$$

$$= 3.1 A$$
Some rounding

An electric motor is being supplied with 500 W of power at 120 V. The resistance of the motor is 8.0Ω . What current is being supplied to the motor?

- A 4.2 A
- B. 7.9 A
- C. 15 A
- D. 63 A

$$P = IV$$
 $I = \frac{P}{V}$
 $= \frac{500}{120}$
 $= 4.2 A$

4.

A circuit junction is shown below.

$$I = I = I = 0.96 A$$

$$0.96 + 1 = 0.53 + 0.75 = 0.96 A$$

$$1 = 0.96 A$$

$$1 = 0.92 A$$

$$0.53 A$$

What is the current and its direction through the 5.0 Ω resistor?

	Current	DIRECTION	
A.	0.32 A	away from junction	
B.	0.32 A	towards the junction	*
C.	2.24 A	away from junction	
D.	2.24 A	towards the junction	

* I must flow into the junction as 0.75+0.53=1.284 flows out and only 0.964 flows in

A power source is providing a constant voltage, V, to the circuit shown below.

1000
Req = 5+7+ $\frac{1}{8} + \frac{1}{10}$ 5.00 R=852 is in parallel with R=1052 Removing R=852 Removing R=852 8.00 Nill increase the resistant
Reg 1) 1 in Hu loop. 7.00 => Reg = 5+7+10 = 225

If the 8.0 Ω resistor is removed from the circuit what happens to the equivalent resistance of the

circuit and the current through the 7.0 Ω resistor?

			Ton
	EQUIVALENT RESISTANCE OF THE CIRCUIT	CURRENT THROUGH 7.0 Ω RESISTOR	1-TOT - 17
A.	Increases V	Decreases	I= VB
В.	Decreases	Increases	Keg
C.	Increases	Increases	A D A
D.	Decreases	Decreases	Us Keg T

Note: Rand I are investy proportional, whil Vand I and Vand Rare directly proportional.

In an electric circuit, 6.25×10^{18} electrons flow past one point in 0.10 s. What is the current?

A.
$$1.6 \times 10^{-19}$$
 A

D.
$$6.25 \times 10^{19}$$
 A

$$T = \frac{100}{0.10}$$

w past one point in 0.10 s. What is the current?

$$T = \frac{Q}{\Delta t} \qquad \qquad Q = (6.25 \times 10^{18})(1.6 \times 10^{-19})$$

$$T = \frac{1.00}{0.10} \qquad \qquad Q = 1.00 C$$

7.

Three/identical light bulbs are placed in a circuit as shown.

$$R_{X} = R_{Y} = R_{Z}$$

$$R_{branch 1} = R_{X} + R_{Y}$$

$$R_{branch 2} = R_{Z} = \frac{1}{2} R_{branch 1}$$

$$R_{branch 2} = R_{Z} = \frac{1}{2} R_{branch 1}$$

$$R_{branch 2} = R_{Z} = \frac{1}{2} R_{branch 1}$$

$$R_{branch 2} = R_{Z} = \frac{1}{2} R_{branch 2}$$

- A. The voltage and current are the same for all three bulbs.
- B. The current in light bulb Z is less than the current in light bulb X.
- C. The current in light bulb Z is greater than the current in light bulb Y.
- D. The voltage across light bulb Z is less than the voltage across light bulb X.

8.

What current would be drawn from the power supply in the circuit shown below?

- A. 0.11 A
- B. 0.17 A
- C. 0.27 A
- D. 0.44 A

A student needs to connect a voltmeter to measure the potential difference across the parallel

resistors in the circuit shown below.

Across which two connection points should the student connect the voltmeter?

- A. U and Z X
- B. X and Y
- C. X and W
- D. Wand Z X

10.

What is the current I through the 10.0Ω resistor in the circuit shown below?

- A. 0.27 A
- B. 0.30 A
- C. 0.34 A
- D. 2.3 A

$$I_{10} = I_{+0+} = \frac{\mathcal{E}}{R_{eq}}$$

$$= \frac{3.0}{1.3+10}$$

$$= 0.27 A$$

$$9T_{15} = \frac{V_{15}}{R} = \frac{3.0}{15} = 0.2 A$$

11.

What power is dissipated by the 15 Ω resistor in the circuit shown?

0.60 W

B. 1.4 W

C. 6.7 W

15 W D.

$$=\frac{12}{40}=0.30 \text{ V}$$

12.

2.
$$T_{TOT} = \frac{V_B}{Reg} = \frac{12}{40} = 0.30 \text{ V}$$

2. $R_{eq} = 20 + 10 + \frac{1}{30 + \frac{1}{5}} = 40 \text{ S}$

What is the terminal voltage of the battery in the circuit show

A. 0.69 V

5.3 V

6.0 V

D. 6.7 V