

PHYSICS 11

OHM'S LAW

$$R = \frac{V}{I}$$
 or $V = IR$ or $I = \frac{V}{R}$

where R is resistance measured in Ohms $[\Omega]$ V is voltage measured in Volts [V] and I is electric current measured in Amperes [A]

RESISTANCE

$$R = \rho \frac{L}{A}$$

where ρ is resistivity of the material measured in 0hm meter $[\Omega \cdot m]$ A is the cross-sectional area of the conductor measured in meter squared $[m^2]$ and L is the length of the conductor measured in meters [m]

ELECTRIC POWER

$$P = IV = I^2R$$

where P is power measured in Watts [W] I is electric current measured in Amperes [A] V is voltage measured in Volts [V] and R is resistance measured in Ohms $[\Omega]$

RESISTORS CONNECTED IN SERIES

- Equivalent (total) resistance in a circuit with resistors in series is the sum of all individual resistances.
- Same current goes through every resistor.

$$R_{eq} = R_1 + R_2 + R_3 + \dots + R_n$$

RESISTORS CONNECTED IN PARALLEL

➤ Equivalent (total) resistance in a circuit with resistors in parallel is calculated by finding the sum of reciprocal values of all resistors followed by reciprocating that sum.

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

$$R_{eq} = \frac{1}{\frac{1}{R_{eq}}}$$

•
$$T_1 = \frac{V_1}{R_1}$$
 > Same voltage is applied across each resistor.
• $T_2 = \frac{V_1}{R_1}$ > Same voltage is applied across each resistor.
• $T_2 = \frac{V_1}{R_1}$ > Same voltage is applied across each resistor.
• $T_2 = \frac{V_1}{R_2}$ > Same voltage is applied across each resistor.
• $T_2 = \frac{V_1}{R_2}$ > Same voltage is applied across each resistor.
• $T_2 = \frac{V_1}{R_2}$ > $T_2 = \frac{V_2}{I_2O}$ = $T_2 = \frac{V_3}{I_2O}$ = $T_2 = \frac{V_3}{I_2O}$ = $T_2 = \frac{V_3}{I_2O}$ = $T_2 = \frac{V_3}{I_2O}$ = $T_3 = \frac{V$

RESISTORS CONNECTED IN SERIES AND IN PARALLEL

Most circuits have resistors wired in series as well as in parallel

Example: Find the equivalent resistance in the circuit below. If the battery provides 12.0 V of voltage, what is the current through the 10Ω resistor?

: Hu equivalent resistance is 8.452.

$$T_{10} = \frac{1}{2} [A]$$

$$T_{TOT} = T_{4} = \frac{V_{8}}{R_{eq}} = \frac{12}{8.7} = \frac{14211 A}{14211 A}$$

- 0 621L

$$I_{10} = \frac{V_{10}}{10}$$
 :- The current through the 1052
reststar is 6.3×10⁻¹ A.

$$R = \frac{V_R}{I_R} = \frac{10}{0.75} - 13.\overline{3}_{\Omega}$$

$$I_R = I_{+0-7} - I_8$$

$$= 2.0 - 1.25$$

$$I_{R} = I_{+0} + -I_{8}$$

= 2.0 - 1.25
= 0.75 A

- 1. Junction rule: The sum of the magnitudes of the currents directed into a junction equals the sum of magnitudes of the currents directed out of the junction.
- 2. Loop rule: Around any closed-circuit loop, the sum of potential drops equals the sum of potential rises.

Example: Find the equivalent resistance in the circuit given that the current through the 8.0Ω is 1.25 A.

