

PHYSICS 11

NORMAL FORCE - SUMMARY

- Normal Force is always perpendicular to the surface of contact.
- Normal Force does not exist without the surface of contact.
- Normal force is directed away from the surface of contact.
- Magnitude of the normal force is related to other forces (or vector components of other forces) that are perpendicular to the surface of contact.

A: Calculate the magnitude of the normal force:

1. A 75.0 kg object lies on a horizontal surface. No other forces are involved.

$$F_N = mg$$

= $(75.0)(9.8)$
= $735N = 7.4 \times 10^2 N$

2. A 75.0 kg object lies on an inclined plane of 28°. Assume no frictional force.

$$F_{N} = F_{g_{\perp}}$$

$$= m_{g} \cdot cos \Theta$$

$$= (75.0)(9.8)(cos 28)$$

$$= 648.966 - ... N$$

$$= 6.5 \times 10^{2} N$$

3. A 25.0 kg object is sliding along a frictionless horizontal surface.

$$F_{N} = m_{g}$$

$$= (25.0)(9.8)$$

$$= 245 N$$

$$= 2.5 \times 10^{2} N$$

4. A 30.0 kg object is pulled with \vec{F}_{pull} = 25 N [R] along a frictionless surface.

$$F_{N} = m_{0}$$

$$= (30.0)(9.8)$$

$$= 294 N$$

$$= 2.9 \times 10^{2} N$$