Unit 4: Polynomials

4.1 Terminology, Definitions, and Concepts

$>$ A polynomial is an algebraic expression that consists of a term or several terms added together.
$>$ A term is an expression that consists of a real number coefficient multiplied by one or more variables, and the variable(s) is (are) raised to a non-negative integral exponent.
\qquad is the pattern every term has to follow.
> Some polynomials have specific names based on the number of terms they contain.

Examples: Determine the number of terms in each polynomial:

	x^{2}	$x^{2}+3 x$	$x^{5}+3 x-2$	$x^{5}+3 x^{2}-2 x+1$
Number of terms				
Specific name				N/A
	polynomial	polynomial	polynomial	polynomial

Vocabulary and Definitions

1. Real number $=$ a number that can be plotted on a horizontal number line.
> When inputted in the calculator, a real number does not give an "error" message. It is any number "legal" in high school.

The set of real numbers has a special symbol: \qquad
2. Variable = a value represented by any letter of the English alphabet, most often the lower case " x " that can be replaced (substituted) by any real number.
$>$ In a single polynomial, each variable is represented by a different letter.

Examples: Determine the number of variables in each polynomial:

Polynomial	$x^{2}+x-y$	$-2 a+3 b+a$	$-b+c$	$-2+3 x^{5}+x^{3}$
Number of variables				

3. Coefficient $=$ a real number that is in front of a variable and multiplies the variable.

Example 1: Circle the coefficient(s) in each polynomial:

$2 x$	$2 x^{4}+45 x$	$-x^{4}+7$	$-0.6 x^{3}+5 x+1$	$8 a^{3}+5 x$

Example 2: Write each term separately and then write what the value of each coefficient.

Polynomial	$-x^{4}+5 x$	$-x^{4}-6$	$0.3 \mathrm{x}^{2}-5 x$	$8 \pi-x$
Individual terms separated by commas				
List of coefficients separated by commas				

4. Integral = an adjective form of the noun "integer"; = having the form of an integer.
5. Non-negative = positive OR zero.
6. Constant Term = a term that does not have a variable.
$>$ Note that the constant term meets the requirements of the definition (pattern) required for any term of a polynomial. How?
\qquad $=$ \qquad $=$ \qquad
$>$ This term is called "the constant term" or the "constant" because it remains unchanged regardless of what value is substituted in for the variable.

Example: Circle the constant term in each polynomial; then write the constant term.

Polynomial	$-x^{4}+5 x$	$-x^{4}-6$	$0.3 x+1-5 x$	$6+8 \pi-x$
Constant term				

7. Degree of a term = the sum of all exponents of each variable in a single term.
$>$ If a variable does not have an exponent, the exponent and the degree are equal to one.
> A constant term has a degree of zero.

Examples: Determine the degree of each term:

Term	$-x^{4}$	$45 x^{4} y z$	$-75 x$	6
Degree				
Term	$0.7 x^{9} y z^{3}$	$\frac{1}{3} x y$	$-3 a b c^{9}$	-5^{4}
Degree				

8. Degree of a polynomial $=$ the highest degree of a term.

Examples: Determine the degree of each polynomial

Polynomial	$-3 x+4$	$x^{4}+3 z$	$-7 x^{5}+x^{13}$	$6 x-0.5 x^{3}$
Degree of the polynomial				
Polynomial	$7 x^{9}+x$	$\frac{1}{3} x+\frac{6}{17} x^{2}$	-3	$3 x+x^{7}-x^{9}$
Degree of the polynomial				

9. Leading term = term with the highest degree.

Examples: Determine the leading terms of each polynomial:

Polynomial	$-3 x+4$	$x^{2}+3 x^{5}$	$-7 x^{5}+x^{3}$	$6 x^{8}-0.5 x^{5}$
Leading term				
Polynomial	$7 x^{9}+9 x^{12}$	$\frac{1}{3} x+\frac{6}{17} x^{2}$	$3 x+x^{2}$	$3 x+x^{2}-x^{7}$
Leading term				

10. Leading coefficient = coefficient of the leading term.

Examples: Determine the leading coefficient for each polynomial:

Polynomial	$-3 x+4$	$x^{2}+3 x^{5}$	$-7 x^{5}+x^{3}$	$6 x^{8}-0.5 x^{5}$
Leading coefficient				
Polynomial	$7 x^{9}+9 x^{12}$	$\frac{1}{3} x+\frac{6}{17} x^{2}$	$3 x+x^{2}$	$3 x+x^{2}-x^{7}$
Leading coefficient				

11. Standard Form $=$ a form of a polynomial in which the terms are written in the descending order of their degree $=$ the leading term is written first followed by a term with the second highest degree; if the polynomial has a constant term different from zero, the constant term is always written last.

Examples: Write each polynomial in standard form, rearrange the terms of each polynomial if necessary.

Polynomial	$-3 x+4$	$x^{2}+3 x^{5}$	$-7 x^{5}+x^{3}-1$	$6 x^{8}-0.5 x^{5}$
Standard form				
Polynomial	$7 x^{9}+9 x^{12}$	$\frac{1}{3} x+x^{2}$	$3 x+x^{2}+4$	$3 x+x^{2}-x^{7}$
Standard form				

