Scale Models

6.3

$>$ Diagrams, plans, patterns, maps, and sketches are drawn to scale to correctly model reality.
$>$ A scale is a ratio between the model and the reality.
> Examples of scales

- 1 cm on a map : 10 km in reality (written in a legend as 1:1 000000)
- 1 cm on a floor plan : 3 m in reality (written in a legend as $1 \mathrm{~cm}: 3 \mathrm{~m}$ OR $1: 300$)
- 1 cm on a sketch : 10 cm in reality (written in a legend as $1 \mathrm{~cm}: 10 \mathrm{~cm}$ OR 1 : 1000)
-

> Scaling changes the size of the dimensions such as length, depth, height, width, radius, diameter, ...
> Scaling does not change angles and shape.

Scale Factor

$>$ A number that expresses the ratio between the image and the original.

$$
S F=\frac{\text { new dimension }}{\text { original dimension }}=\frac{\text { image }}{\text { original }}=\frac{n e w}{\text { old }}
$$

$>\mathrm{SF}>1$ means enlarging OR scaling up
$>0<S F<1$ means reducing OR scaling down
$>$ There is no $\mathrm{SF}=1$ because multiplying dimensions by 1 will give an image that is exactly the same size and shape as the original.

Dimensions of the new shape $=S F \times$ dimensions of the original

Example 1: Sketch a labeled diagram of a scaled rectangle given the scale factor.
Original rectangle:

a) $\mathrm{SF}=3$
b) $\mathrm{SF}=0.5$
c) $\mathrm{SF}=10$

Example 2: What is the radius of the original circle if the enlarged circle has a radius of 14 cm and the scale factor used to create the scaled up image was 5 ? Include a labeled diagram in your solution.

Example 3: What is the length of a diagonal of a reduced square if the original square with a diagonal of 8.5 cm was scaled down by a factor of 0.2 ? Include a labeled diagram in your solution.

Example 4: What scale factor created the image below? What assumption do you make?

5 cm

12 cm

