Best Form 5.6 | Recall: There are several ways to de | | relatio | onship in mathem | natics. So far, | we have | |--------------------------------------|-----|---------|------------------|-----------------|---------| | discussed & Sentence | | a | Table of | Values | _, | | an equation | and | a | graph | | | Each form of this description has its strengths and weaknesses. | Form | Sentence | Table of Values | Equation | Graph | | |---|---|--|--|---|--| | Strengths | Easy to understand if the relationship is simple. | Good for a quick
reference and to see
how many data points
are available. | Convenient for quick and exact calculations. | Easy for a quick reference to see a trend/relationship. Good for estimates – extrapolation and interpolation. | | | Weaknesses It can become rather confusing if the relationship is complex | | It can become
overwhelming if too
much data is listed. | It may be difficult to find
the equation without
technology. | It may be difficult to
draw a graph without
technology. | | | | | It may not be large
enough to detect a
pattern/relationship. | 97, 617 | It may be deceiving if
only a few points are
known. | | ## In summary: - If you need an exact value, use an equation, - If you need a quick estimate, use a graph. - If you need a convenient reference, use a table.