Equations, Tables & Graphs 5.5 There are several ways to describe a pattern/relationship in mathematics: - ➤ A sentence: When x increases by one, y increases/decreases by _____ - > A table of values - > An equation - > A graph We can use one type of description to create the others. Example 1: A) Given an equation, complete a table of values. B) Using the table of values, describe the pattern between "x" and "y" values in a sentence. - C) List 5 ordered pairs of the points that are on the graph. - D) Graph the relation. A) | 1 | | ٦ | |---|---|---| | ı | J | ų | | | | • | | Г |----------|-----------|---|----------|----------|---|--|---|----------|----------|----------|----------|----------|----------|--------------|--------------|----------|----------|----------|----------|----------| \vdash | ┪ | \vdash | ┪ | \vdash | \dashv | | \vdash | | | | | | | _ | \vdash | - | \vdash | | | | | Н | - | \dashv | | \vdash | \dashv | - | | | _ | \vdash | H | _ | | H | | _ | | | - | | | \vdash | \vdash | \vdash | | \vdash | | | | | | <u> </u> | H | | | <u> </u> | <u> </u> | | | | \vdash | | \vdash | | | | | \perp | _ | | | | | | | _ | | | | | | | | | | | | | | L | _ | | | | | | | | | | | | | | | | | | | Щ | | L | - | Г | \Box | Г | \vdash | \exists | | | \vdash | | | | _ | _ | | | <u> </u> | | | | | | | | | | \vdash | \dashv | | | | | | _ | | | \vdash | | \vdash | \vdash | | | | \vdash | \vdash | | Н | | H | \dashv | | | | | \vdash | | | | | | | - | | | = | - | | | \vdash | | \vdash | \dashv | | | <u> </u> | | | | <u> </u> | | \vdash | | <u> </u> | | <u> </u> | | | \vdash | \vdash | | Н | | \vdash | 4 | | \vdash | <u> </u> | _ | <u> </u> | | <u> </u> _ | <u> </u> | | | | Ш | | L | | | | | | | | | | | | | | | | | L. | L., | L | | | C) | , | |----|---| |----|---| - Example 2: A) Given an equation, complete a table of values. B) Using the table of values, describe the pattern between "x" and "y" values in a sentence. - C) List 5 ordered pairs of the points that are on the graph. - D) Graph the relation. A) | | · · · · · · · · · · · · · · · · · · · | |------------|---------------------------------------| | <i>y</i> = | 3x + 4 | | x | у | | -3 | | | -2 | | | - 1 | | | 0 | | | 1 | | D) | B) | 1 | | | |----|---|--|--| | _, | | | | Example 3: A) Given an equation, complete a table of values. Hint: change the equation in such a way so it starts with 1y. *} - B) Using the table of values, describe the pattern between "x" and "y" values in a sentence. - C) List 5 ordered pairs of the points that are on the graph. - D) Graph the relation. A) D) | 3 <i>y</i> | = x + 6 | |------------|---------| | x | у | | - 9 | | | -6 | | | -3 | | | 0 | | | 3 | | | | | | | | | | | | | | | | | | L | |-----------|----------|---|------|---|----------|----------|----------|----------|-------|----------|----------|---|----------|---|----------| | \Box | | | | | | | | | | | | | | | | | \perp | \Box | | | | | | | | | | | | | | L | | 4 | 4 | | | | | | | | | | | | _ | _ | L | | \dashv | \dashv | | | | | | | | | | | | | | _ | | \dashv | \dashv | _ | | | | | | | | | | | <u> </u> | | L | | \dashv | \dashv | _ | _ | | | | | | | Щ | | | _ | _ | L | | \dashv | \dashv | |
 | | | | |
_ |
_ | _ |
 | _ | | _ | L | | \dashv | \dashv | _ | | _ | | | | | | | | | <u> </u> | | ┞ | | \dashv | \dashv | _ | | | | | |
 |
 | | | | | | \vdash | | \dashv | \dashv | | | | | | | | | | | | | | H | | \dashv | \dashv | | | | \vdash | | \vdash | \vdash | | | | | | | H | | \dashv | \dashv | | | | | \vdash | | | | | | | | | \vdash | | | \dashv | |
 | - | | | |
- | | \vdash | \vdash | | \vdash | _ | ┞ | | \dashv | \dashv | | | | | | | | | | | | | | H | | \exists | | | | | | | | | | | | | | | Γ | | \exists | \neg | | | | | | | | | | | | | | Τ | | B) | | |----|--| | _ | | *) Change 3y = x + 6 ## y-intercept - > y-intercept is a point where a graph intersects or touches the y-axis. - y-intercept has coordinates of the form: - ➤ A very convenient way to find the coordinates of the y-intercept when you know the equation is to substitute x=0 into the equation and solve for "y". Example 1: Determine the y-intercept for each equation: | y=2x+4 | 5y = -2x + 11 | $y = \frac{7}{8}x + 6$ | $y = \frac{x}{9} + 4$ | -y - 1.5 = -0.6x | |---------------------|---------------------|------------------------|-----------------------|--| The y-intercept is: | | • | | | | | | J. Opel of Company | | | | ACCOUNTS DATE OF THE SAME T | Conclusion: When the equation starts with "1y", the y-coordinate of the y-intercepts is the constant term on the other side of the equal sign. To find the y-intercept in a table of values, find the row that has x=0. To find the y-intercept on a graph, find the y-coordinate of the point of intersection of the graph and the y-axis. # Determining the Equation from a Table of Value\$ #### Steps: - Determine the pattern: when x increases by 1, y increases (+)/decreases(-) by _____ - This will be the "pattern" number that will be written in front of the "x" in the equation. - \triangleright Using the pattern detected in the table of values, find the value of "y" when x=0. - This is the y-intercept that will be written at the end of the equation. - \triangleright Write the question in the form: $y = pattern\ number \cdot x + yintercept$ Example 1: Determine the equation given a table of values. a) | x | у | |----|--------------| | -1 | 2.75 | | 0 | 3 | | 1 | 3.25 | | 2 | 3.50 | | 3 | 3 .75 | The pattern is: The y-intercept is: ∴ The equation is b) | x | у | |---|----| | 1 | 10 | | 2 | 13 | | 3 | 16 | | 4 | 19 | | 5 | 22 | The pattern is: The y-intercept is: \therefore The equation is c) | у | | |-----|--| | 3.5 | | | 3 | | | 2.5 | | | 2 | | | 1.5 | | | | | The pattern is: The y-intercept is: \therefore The equation is # **Determining the Equation from a Graph** ### Steps: - > Identify the y-intercept - ➤ Identify the pattern: when x increase by 1, the value of "y" increases/decreases by _____ - \triangleright Put the two pieces of information into an equation: $y = pattern\ number \cdot x + yintercept$ ### Example 1: The pattern is: The y-intercept is: ∴ The equation is ## Example 2: The pattern is: The y-intercept is: ∴ The equation is Example 3: The pattern is: The y-intercept is: $\boldsymbol{\cdot \cdot}$ The equation is