M9

Unit 4: Polynomials

4.1 Terminology, Definitions, and Concepts

- A polynomial is an algebraic expression that consists of a term or several terms added together.
- A term is an expression that consists of a real number coefficient multiplied by one or more variables, and the variable(s) is (are) raised to a non-negative integral exponent.

o,1,2,3,... integal exponents

is the pattern every term has to follow. (connot be decin

> Some polynomials have specific names based on the number of terms they contain.

Examples: Determine the number of terms in each polynomial:

	x ²	$x^2 + 3x$	$x^5 + 3x - 2$	$x^5 + 3x^2 - 2x + 1$
Number of terms	1	2.	3	4
Specific name	monomial	binomial	trinomial	N/A
#C	polynomial	polynomial	polynomial	polynomial
	Mono = 1	bi = 2	tri = 3	Poly = More. to

Vocabulary and Definitions

- 1. Real number = a number that can be plotted on a horizontal number line.
 - When inputted in the calculator, a real number does not give an "error" message. It is any number "legal" in high school.
 - The set of real numbers has a special symbol: _

- 2. Variable = a value represented by any letter of the English alphabet, most often the lower case "x" that can be replaced (substituted) by any real number. (From English Alphabet)
 - In a single polynomial, each variable is represented by a different letter.

Examples: Determine the number of variables in each polynomial:

Polynomial	$\underline{x}^2 + \underline{x} - \underline{y}$	$-2\underline{a} + 3\underline{b} + \underline{a}$	$-\underline{b}+\underline{c}$	$-2 + 3x^5 + x^3$
Number of variables # of different letters	2	2	2	1

3. Coefficient = a real number that is in front of a variable and multiplies the variable.

Example 1: Circle the coefficient(s) in each polynomial:

Example 2: Write each term separately and then write what the value of each coefficient.

	/			
Polynomial	$-\frac{1}{3}x^4 + 5x$	-1x ⁴ - 6	$0.3x^{2} - 5x$	$8\pi - 1x$
Individual terms separated by commas	-124, 5x	-1x ⁴ , -6	0.3×2, -5×	87,12
List of coefficients separated by commas	-1,5	-1	0.3,-5	-1

- 4. Integral = an adjective form of the noun "integer"; = having the form of an integer.
- 5. Non-negative = positive OR zero.
- 6. Constant Term = a term that does not have a variable. -> (has no Letter)
 - ➤ Note that the constant term meets the requirements of the definition (pattern) required for any term of a polynomial. How?

$$5 = 5.x^{\circ} = 5.(1) = 5$$

This term is called "the constant term" or the "constant" because it remains unchanged regardless of what value is substituted in for the variable.

Example: Circle the constant term in each polynomial; then write the constant term.

Polynomial	$-1x^4 + 5x$	$-\frac{1}{2}x^{4}$ 6	0.3x + 1 - 5x	$6+8\pi-1x$
Constant term	None or Ø	-6	1	6,871

- 7. Degree of a term = the sum of all exponents of each variable in a single term.
 - If a variable does not have an exponent, the exponent and the degree are equal to one.

$$5x = 5x' =)$$
 degree (1) Degree is the Same as the exponent.

A constant term has a degree of zero.

x²y = degree: 2+1=3 5 2'y = degree: 1+1=2

Examples: Determine the degree of each term:

Term	$-x^{4}$	$45x^4y^2z^4$	-75x'	6
Degree	4.	4+1+1	į	Ø
Term	$0.7x^9y^2z^3$	$\frac{1}{3}x^{1}y^{1}$	-3dbc9	-5 ⁴
Degree	13	1+1	1+1+9	Ø

8. Degree of a polynomial = the highest degree of a term. He one with the bigges Exponent is the

Examples: Determine the degree of each polynomial

Polynomial	$-3x^{2}+4x^{2}$	$\frac{\mathbf{Q}}{x^4 + 3z'}$	$-7x^5 + x^{13}$	$6x' - 0.5x^3$
Degree of the polynomial	1	4	13	3
Polynomial	$7x^9 + x^1$	$\frac{1}{3} \frac{0}{x'} + \frac{6}{17} \frac{0}{x^2}$	−3 % °	$3x^{1} + x^{7} - x^{9}$
Degree of the polynomial	9	2	Ø	9

^{9.} Leading term = term with the highest degree. "boss term"

Examples: Determine the leading terms of each polynomial:

Polynomial	$-3x^{4}+4$	$x^2 + 3x^5$	$-7x^5 + x^3$	$6x^8 - 0.5x^5$
Leading term	-32	3x ⁵	-7x5	6 × 8
Polynomial	$7x^9 + 9x^{12}$	$\frac{1}{3}x' + \frac{6}{17}x^2$	$3x^{1} + x^{2}$	$3x^{4} + x^2 - x^7$
Leading term	9x12	6 x 2	X2	X7

10. Leading coefficient = coefficient of the leading term.

Examples: Determine the leading coefficient for each polynomial:

Polynomial	-3x + 4	$1x^2 + 3x^5$	$-7x^5 + 1x^3$	$6x^8 - 0.5x^5$
Leading coefficient	- 3	3	- 7	6
Polynomial	$7x^9 + 9x^{12}$	$\frac{1}{3}x + \frac{6}{17}x^2$	$3x + 1$ x^2	$3x + x^2 \sqrt{1}x^7$
Leading coefficient	9	617	1	-/

11. Standard Form = a form of a polynomial in which the terms are written in the descending order of their degree = the leading term is written first followed by a term with the second highest degree; if the polynomial has a constant term different from zero, the constant term is always written last.

Examples: Write each polynomial in **standard form**, rearrange the terms of each polynomial if necessary.

Polynomial	-3x' + 4	$x^2 + 3x^5$	$-7x^5 + x^3 - 1$	$6x^8 - 0.5x^5$
Standard form	-3x+4	3x5+x2	-7x5+x3-1	628-0.525
Polynomial	$7x^9 + 9x^{12}$	$\frac{1}{3}x' + x^2$	$3x^{4} + x^{2} + 4$	$3x^{\prime} + x^2 - x^7$
Standard form	9212+729	$\chi^2 + \frac{1}{3}\chi$	x2+3x+4	-27+22+3x

Example:
$$\chi^8 + \chi^{10} + \chi^9 - 3(\chi^\circ)$$

Highest to Lowest

 $\chi^{10} + \chi^9 + \chi^8 - 3\chi^\circ$

Polynomials Polynomials Constant (term) Coefficients 4 Terms Real number = TR Pattern of every term has to Follow TR. 20,1,2,3 Lo the Coefficient must be real L.> the Variable is a letter from the English alphabet L> Exponents are not allowed to be regative, or a decimal, or a fraction. =) in other words, exponents are positive integers or a Zero.