BEDMAS revisited

Recall: Exponents have to be applied right after expressions in brackets are evaluated.
Simplify and evaluate:

$\mathbf{1}$	$1^{5}+(9-4)^{2}+4 \times 5=$
$\mathbf{2}$	$2^{5}+(5 \times 4)^{0}-4 \times 15=$
$\mathbf{3}$	$\frac{3^{2}}{12-3} \times(45 \div 9)^{2}+10 \times(-5)=$
4	$\frac{6^{2}+(9-17)^{2}+(-4) \times 7}{3 \times(16 \div 8)^{4}}=$

Square Roots of Perfect Square Numbers

The Square Root of a perfect square number is the factor that was multiplied by itself in order to produce the square number.

$\sqrt{0}$	$\sqrt{1}$	$\sqrt{144}$	$\sqrt{289}$	$\sqrt{10000}$	$\sqrt{16}$	$\sqrt{256}$

- This means that taking a square root of a number is the inverse operation of squaring a number. The same way subtraction will undo addition and division will undo multiplication, taking a square root will undo squaring.
- How does it work?
$\sqrt{25}=\sqrt{5 \times 5}=\sqrt{5^{2}}=5$
We say: " Five is the square root of twenty five." OR " The square root of twenty five is 5."
Try it:
Find the square root of the following integers:

What is the square root of $36 ?$	$\sqrt{36}$	
What is the square root of $121 ?$	$\sqrt{121}$	
What is the square root of 400?		
What is the square root of $49 ?$		
What is the square root of $169 ?$		
What is the square root of $144 ?$		

Using Prime Factorization Tree to Determine If a Number is a Perfect Square

- Write down the prime factorization tree following the rule reviewed in unit 1.

Rules: Always try the smaller prime factors first. Move onto a bigger prime factor only if you cannot use the smaller one any more or at all. Do not skip prime factors.
Start with 2, 3, 5, 7, 11, 13, 17, 19, ...

- Once you have written down the tree see if all prime factors can be grouped into pairs formed by identical prime factors. "See if all prime factors have an identical twin."
- If all prime factors can be grouped into identical pairs, the original number is a perfect square number.

Example: Without a calculator, determine whether the given number is a perfect square number.

$$
324
$$

Using Prime Factorization to Determine the Square Root of a Perfect Square Number

- Write the prime factorization tree following the rules mentioned earlier.
- Group prime factors into pairs made of two identical factors.
- Multiply the prime factors together using one factor from each pair.

Example:
Find the square roots.

$\sqrt{225}$	$\sqrt{225}$
$\sqrt{196}$	

Using the Factoring "Rainbow" to Determine Whether a Number Is a Perfect Square Number

- Write the list of all factors for the given number.
- Count the number of the factors.
- An even number of factors means that the given number is not a perfect square number.
- An odd number of factors means that the given number is a perfect square number.

Try it.

Number	List of Factors	Number of factors	Perfect Square? Yor N
75			
291			
225			

