1.4 BEDMAS with Integers and Decimals

В		
E		
D		
Μ		
Α		
S		

New: There are many different types of brackets.

_____ = parentheses ("soft = round" brackets)

_____ = boxed brackets

_____ = broken brackets

_____ = braces ("curly brackets")

Each type of brackets has its special uses. Sometimes (but not always) several types of brackets can be used in a single question to indicate the correct sequence of steps.

! If a question contains several sets of brackets, always solve from the inside out !

 $\{[(5+3) \times 6] + 20\} \div 4 = is the same as: (((5+3) \times 6) + 20) \div 4 =$

Note: Brackets around a single number are used to separate a negative number from operation symbols or to bring attention to the fact that a number is negative. You have to be very careful when removing those types of brackets. These brackets are not the same as the "B" in BEDMAS.

Solve:

1.
$$(-5) + (3+5) \div 4 =$$

2.
$$(3+5) \div (-4) + (-9) =$$

Remember, when solving questions with several operations and with negative numbers, it is very important to know what symbols stand for an operation and what symbols are indicating whether a number is positive or negative.

-4	
5+(-3)	
-7 + (-6)	
-7 + (-6 - 5)	

r	
(-4)(7)	
$-5 \times 6 + (-2)$	
-(17 - 11) - (+12)	
$-7 + (-2 + 5)^2$	
$4 + (12 - 3)^2 - 71 \times 0$	
$++(12 - 5) / 1 \times 0$	

Recall: when applying BEDMAS to fractions, always apply it to the numerator and denominator separately. Only once you have a single number for the numerator and a single number for the denominator, reduce the fraction and/or express it as a mixed number.

1	$16 \div 4 + (5 + (-3)) =$
2	$\frac{(-5)(-6) + (-2)}{3 + 8 \div + 2} =$
3	$\frac{(-15) \div (-5) - (-2)}{3 + 8 \div (-2)} =$

Practice BEDMAS by showing the correct sequence of steps when solving the following:

 $\frac{5 \times (-8) + (2+5)^2}{(13+(-8)+1) \div 2^2} =$