1.4 BEDMAS with Integers and Decimals

B
E
D
M
A
S

New: There are many different types of brackets.

\ldots	$=$ parentheses ("soft = round" brackets)
	$=$ boxed brackets
	$=$ broken brackets
\square	$=$ braces ("curly brackets")

Each type of brackets has its special uses. Sometimes (but not always) several types of brackets can be used in a single question to indicate the correct sequence of steps.
! If a question contains several sets of brackets, always solve from the inside out !
$\{[(5+3) \times 6]+20\} \div 4=$ is the same as: $\quad(((5+3) \times 6)+20) \div 4=$
Note: Brackets around a single number are used to separate a negative number from operation symbols or to bring attention to the fact that a number is negative. You have to be very careful when removing those types of brackets. These brackets are not the same as the " B " in BEDMAS.

Solve:

1. $(-5)+(3+5) \div 4=$
2. $(3+5) \div(-4)+(-9)=$

Remember, when solving questions with several operations and with negative numbers, it is very important to know what symbols stand for an operation and what symbols are indicating whether a number is positive or negative.

-4	
$5+(-3)$	
$-7+(-6)$	
$-7+(-6-5)$	

$(-4)(7)$	
$-5 \times 6+(-2)$	
$-(17-11)-(+12)$	
$-7+(-2+5)^{2}$	
$4+(12-3)^{2}-71 \times 0$	

Recall: when applying BEDMAS to fractions, always apply it to the numerator and denominator separately. Only once you have a single number for the numerator and a single number for the denominator, reduce the fraction and/or express it as a mixed number.

Practice BEDMAS by showing the correct sequence of steps when solving the following:

1	$16 \div 4+(5+(-3))=$
2	$\frac{(-5)(-6)+(-2)}{3+8 \div+2}=$
3	$\frac{(-15) \div(-5)-(-2)}{3+8 \div(-2)}=$

(

