FMPC10

TRIGONOMETRY

Trigonometry is a branch of mathematics that studies properties of triangles and relationships between sides (lengths) and/or angles of those triangles.

REVIEW

• In every triangle constructed on a 2-dimensional plane (=flat surface) the three interior angles will add up to _______.

Example: What is the degree measure of $\angle A$ if $\angle B = 84^{\circ}$ and $\angle C = 31^{\circ}$?

$$\chi = 180^{\circ} - 84^{\circ} - 31^{\circ}$$

 $\chi = 65^{\circ}$

- A triangle can have at most one angle greater than $\frac{90^{\circ}}{}$. Such a triangle is called an obtuse triangle.
- A triangle that has all interior angles smaller than 90° is called an acute triangle.
- A triangle that has an angle of ______ is called a right-angled triangle, or a right triangle.
- A triangle that has at least two sides of the same size is called an <u>ISOSCULA</u> triangle. In such a triangle, at least two interior angles are also of the same size. A special case of such a triangle is a triangle that has all three sides of the same size.
- A triangle with all sides of the same size is called an equilatival triangle. In this type of triangle, all tree angles are the same and their degree measure is 60°.
- To show that sides are the same length, we cross the congruent (same) sides with a short stroke.
- To show that angles are the same, we give them the same symbol (a dot, cross, arc, ...).

Rules for Labeling Angles and Sides

Every angle has a tip that is called a vertex. To label an angle we can do one of these three things:

- 1. Use Greek letters:
- alpha α
- β beta γ gamma δ delta θ theta
- - 2. Use a symbol ∠ and a capital letter that is at the vertex:

3. Use a symbol \angle and three capital letters, where the middle letter is the vertex:

1 ABC

- Side lengths are line segments.
- Every side starts at a vertex of a triangle (corner) and goes to another vertex.

Sides are labeled using lower case letters. The letter is the same as the name of the vertex opposite of the side.

Right-Angled Triangles

- Every right-angled triangle has its longest side across from the 90° angle.
- The longest side in the right-angled triangle is called the

hypotenu se

- A special symbol in a diagram is used to show that the interior angle is the right angle.

leg ly

• In every right-angled triangle the following is true:

hypotenux = leg + leg 2

leg² = hypotenner² - leg²

New labelling of right-angled triangles

- When working with a right-angled triangle in which <u>one</u> of the acute angles is labeled. We label the sides in relation to this angle.
- For the longest side we use **H = hypotenuse** (this is the only label that has not changed).
- For the side that does not touch the labeled acute angle we use
 O = opposite.
- For the side that forms the angle but is shorter than the hypotenuse we use
 A = adjacent.

- The relationship between the sides in a right-angled triangle goes beyond the Pythagorean Theorem.
- There are three specific ratios between two of the three sides.
 These ratios are called <u>basic trigonometric ratios.</u>

BASIC TRIGONOMETRIC RATIOS

Name				
Name	Sine	Cosine	tangen L	
Abbreviation	Sin	Cos	tangent tan	
Definition	Sind = opposite hypotenuse	Cos D= adjacent hypotenuse	tant adjant	
Diagram				
	O T O	H A	O A	
Formula	$Sin\theta = \frac{0}{H}$	$Cos \theta = \frac{A}{H}$	$tam \theta = \frac{0}{A}$	

SOH - CAH - TOA

- The value of a trigonometric ratio does not have units. It is a number (a whole number, fraction or a decimal).
- Basic trigonometric ratios can be used to find the values for unknown side lengths if one side and one acute angle in a right-angled triangle is known.
- An inverse of a basic trigonometric ratio can be used to find a degree measure of an unknown acute angle in a right-angled triangle when two sides are known.

SOH - CAH- TOA

Example 1: Without using the Pythagorean Theorem, find the two unknown sides in the

$$\cos \theta = \frac{A}{H}$$

Example 2: Without using the Pythagorean Theorem, find the two unknown sides in the $\triangle PQR$:

$$\sin \theta = \frac{0}{H}$$

$$\sin 50^{\circ} = \frac{7.5}{x}$$

Findy:
$$\frac{0}{4an\theta} = \frac{0}{A}$$

$$+an 50° = \frac{7.5}{y}$$

$$\frac{7.5}{4an 50°}$$

$$\chi = \frac{7.5}{\sin 50^{\circ}} = 9.79$$

SOH- CAH-TOA

Example 3: Without using the Pythagorean Theorem, find the two unknown sides in the \triangle ABC:

Find x:

$$Cos \theta = \frac{A}{+1}$$

 $Cos 71° = \frac{x}{23}$
 $A3 \cdot Cos 71° = x$
 $x = 7.49$

Find y:

Sin
$$\theta = \frac{0}{H}$$

Sin $71^\circ = \frac{4}{23}$
 $23 \cdot \sin 71^\circ = 4$
 $23 \cdot \sin 71^\circ = 4$
 $23 \cdot \sin 71^\circ = 4$

: The sides are: x= 7.49 and y = 21.75.

Example 4: Without using the Pythagorean Theorem, find the two unknown sides in the ΔXYZ :

Find x:

$$\cos \theta = \frac{A}{H}$$

$$\cos 47^{\circ} = \frac{10}{X}$$

$$\chi = \frac{10}{\cos 47^{\circ}}$$

$$\chi = \frac{19}{19,66}$$

9			
			₽.