NOTES

Integral Exponents

Summary of Exponent Rules

for any integers	m and n	Examples
Exponent of 1	$a^{\dagger} = a$	5' = 5 ; (-7)' = -7
Exponent of 0	$a^0 = 1, a \neq 0$	5° = 1; (-7)° = 1
Product Rule	$\left(a^{m}\right)\left(a^{n}\right)=a^{m+n}$	$(2^2)(2^4) = 2^{2+4} = 2^6$
		(4)(16)=64=26
Quotient Rule	$\frac{a^m}{a^n} = a^{m-n}, a \neq 0$	$\frac{5^3}{5^2} = 5^{3-2} = 5' = 5$
Power Rules	$\left(a^{m}\right)^{n}=a^{mn}$	$(2^4)^2 = 2^{4\times 2} = 2^8$
	$(ab)^m = (a^m)(b^m)$	$(37)^2 = 3^2 \cdot 7^2 = 9.49 - 441 = 21^2 = 4$
	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, b \neq 0$	$\left(\frac{x}{7}\right)^2 = \frac{\chi^2}{7^2} = \frac{\chi^2}{49} = \frac{1}{49} \cdot x^2$
Negative Exponents	$a^{-n} = \frac{1}{a^n}, a \neq 0$	5-1 - 1 - 5
	$\frac{1}{a^{-n}} = a^n$	$\frac{1}{3^{-4}} = 3^{+4} = 81$
	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}$ $C \neq 0, b \neq 0$	$\left(\frac{x}{3}\right)^{-5} = \left(\frac{3}{x}\right)^{5}$
Rational Exponents	$\sqrt[n]{a} = a^{\frac{1}{n}}$	1x = x ¹ / ₂ 3/x ⁶ = x ¹ / ₃ = x ²
	$\sqrt[n]{a} = a^{\frac{1}{n}}$ $\sqrt[n]{a^m} = a^{\frac{m}{n}}$	3/x6 = x3 = x2

hen

Y

extra

77

Flower-Power Rule

Simplifying Integral Exponents

1. Simplify.

a)
$$(5^8)(5^{-3}) = 5^{8+(-3)} = 5^{8-3} = 5^{5}$$

1. Simplify.
a)
$$(5^8)(5^{-3}) = 5^{8+(-3)} = 5^{8-3}$$

b) $(0.8^{-2})(0.8)^{-4}$

c)
$$\frac{(2x)^5}{(2x)^{-3}} = \left(\frac{1}{2} \right)^5 - \left(-3 \right)$$

$$= (21)^{8} = 2^{8} \times 8$$

$$= [256x^{8}]$$

$$(0.8^{-2})(0.8)^{-4} = \left(\frac{8}{10}\right)^{-2} \left(\frac{8}{10}\right)^{-4}$$

$$= \left(\frac{5}{4}\right)^{2} \left(\frac{5}{4}\right)^{4} = \left(\frac{5}{4}\right)^{2+4}$$

$$\frac{(2x)^5}{(2x)^{-3}} = \frac{5^6}{4^6} = \frac{15625}{4096}$$

$$\frac{(2x)^{5}}{1} \cdot \frac{1}{(2x)^{-3}} = \frac{(2x)^{5} \cdot (2x)^{3}}{1} = \frac{(2x)^{5+3}}{\sqrt{(2x)^{8}}}$$

$$\frac{1}{256x^{8}} = \frac{2x^{8}}{2^{8}x^{8}}$$

Your Turn:

a)
$$(2^{-3})(2)^5$$

b)
$$\frac{7^{-5}}{7^3} = 7^{-5}$$

c)
$$\frac{(-3.5)^4}{(-3.5)^{-3}} = (-3.5)^{(y-(-3))}$$

$$\frac{(-3.5)^{-3}}{(-3.5)^{-3}} \circ (-3.5)$$

$$= \begin{bmatrix} -35 \\ 10 \end{bmatrix}^7$$

2. Simplify to a power with a single, positive exponent; evaluate where possible.

a)
$$(4^3)^{-2} = \frac{1}{3}(3)(-1) = \frac{4}{1} = \frac{1}{46}$$

$$02 = 0.0002 = \frac{1}{4096}$$

b)
$$[(a^{-2})(a^{0})]^{-1} = [a^{-2}]^{-1} = [a^{-2}]^{-1}$$

where $a \neq 0 = a = [a^{-2}]$

c)
$$\left(\frac{2^4}{2^6}\right)^{-3} = \left(\frac{2^6}{2^4}\right)^3$$

$$= \left(\frac{2^4}{2^6}\right)^3 = \left(\frac{2^6}{2^4}\right)^3$$

$$= \left(\frac{2^5}{2^4}\right)^3 = 0$$

$$= \left(\frac{2^5}{2^4}\right)^3 = 0$$

$$= \left(\frac{2^5}{2^4}\right)^3 = 2^{(1)(3)}$$

$$= \left(\frac{2^4}{2^6}\right)^{-3} = \left(\frac{2^6}{2^4}\right)^3$$

$$= \left(\frac{2^5}{2^4}\right)^3 = 2^{(1)(3)}$$

$$= \left(\frac{2^4}{2^6}\right)^{-3} = \left(\frac{2^6}{2^4}\right)^3$$

$$= \left(\frac{2^6}{2^4}\right)^3 = \left(\frac{2^6}{2^4}\right)^3 = \left(\frac{2^6}{2^4}\right)^3$$

$$= \left(\frac{2^6}{2^4}\right)^3 = \left(\frac{2^6}{2^4}\right)^3 = \left(\frac{2^6}{2^4}\right)^3$$

$$= \left(\frac{2^6}{2^4}\right)^3 = \left(\frac{2^6}$$

d)
$$\left[\left(\frac{3}{4} \right)^{-2} \left(\frac{3}{4} \right)^{4} \right]^{-2} = \left[\left(\frac{3}{4} \right)^{+4} \right]^{-2} = \left[\left(\frac{3}{4} \right)^{2} \right]^{-2} = \left[\left(\frac{3}{4} \right)^{-2} \right]^{-2} = \left[\left(\frac{$$

Your Turn:

a)
$$[(0.6^3)(0.6)^{-3}]^{-3}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

$$= [(0.6)^3]^{-5}$$

b)
$$\left(\frac{x^{6}}{x^{4}}\right)^{-2} = \left(\frac{x^{4}}{x^{6}}\right)^{2} = \left(\frac{x^{2}}{x^{6}}\right)^{2} = \left(\frac{y^{2}}{y^{3}}\right)^{0} = \left(\frac{y^{2}}{y$$

3. A culture bacteria in a lab contains 2000 bacterium cells. The number of cells doubles every day. This relationship can be modeled by the equation $N = 2000(2)^t$, where N is the estimated number of bacteria cells and t is the time in days. How many cells were present after two days?

There will be 8000 bacterium cells after 2 days of growth.

How many cells were present after one week? How many cells were present 2 days ago?

$$N = 2500(2)^7$$
 $N = 256000$
 $N = 500$
 $N = 500$

4. A mountain pine beetle population can triple every year. If the population in Jasper National Park is 10,000 the formula for the population would be P=10,000(3)ⁿ, n being the # of years.

How many beetles will there be 2 years from now?
$$P = 10000(3)^{2}$$

$$P = 90000$$
How many beetles were there 4 years ago?
$$P = 10000(3)^{-4}$$

$$P = 123$$

5. There are ~ 117 billion grasshoppers in an area of 39,000 km². How many are there per square kilometer? Use exponents to solve.

$$\frac{117 \times 10^{94}}{3.9 \times 10^{4}} = \frac{117}{3.9} \times 10^{9-4} = 30 \times 10^{5}$$

$$= 3000000$$

$$= 3.0 \times 10^{6}$$

$$= 3.0 \times 10^{6}$$

$$= 3.0 \times 10^{6}$$