Integral Exponents

Summary of Exponent Rules

for any integers	m and n	Examples
Exponent of 1	$a^1 = a$	
Exponent of 0	$a^0=1, a\neq 0$	
Product Rule	$(a^m)(a^n) = a^{m+n}$	
Quotient Rule	$\frac{a^m}{a^n} = a^{m-n}, a \neq 0$	
Power Ruies	$(a^m)^n = a^{mn}$ $(ab)^m = (a^m)(b^m)$ $(\frac{a}{b})^n = \frac{a^n}{b^n}, b \neq 0$	
Negative Exponents	$a^{-n} = \frac{1}{a^n}, a \neq 0$ $\frac{1}{a^{-n}} = a^n$ $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$	
Rational Exponents	$\sqrt[n]{a} = a^{\frac{1}{n}}$ $\sqrt[n]{a^m} = a^{\frac{m}{n}}$	

Simplifying Integral Exponents

1. Simplify.

Simply using positive exponents.

a)
$$(5^8)(5^{-3})$$

$$(5^8)(5^{-3})$$

b)
$$(0.8^{-2})(0.8)^{-4}$$

$$(0.8^{-2})(0.8)^{-1}$$

c)
$$\frac{(2x)^5}{(2x)^{-3}}$$

$$\frac{\left(2x\right)^{5}}{\left(2x\right)^{-3}}$$

Your Turn:

a)
$$(2^{-3})(2)^5$$

b)
$$\frac{7^{-5}}{7^3}$$

c)
$$\frac{(-3.5)^4}{(-3.5)^{-3}}$$

2. Simplify to a power with a single, positive exponent; evaluate where possible.

a)
$$(4^3)^{-2}$$

b)
$$[(a^{-2})(a^0)]^{-1}$$

c)
$$\left(\frac{2^4}{2^6}\right)^{-3}$$

d)
$$\left[\left(\frac{3}{4} \right)^{-2} \left(\frac{3}{4} \right)^4 \right]^{-2}$$

Your Turn:

a)
$$\left[\left(0.6^3 \right) \left(0.6 \right)^{-3} \right]^{-5}$$

$$b) \qquad \left(\frac{x^6}{x^4}\right)^{-2}$$

$$\mathbf{c)} \left[\frac{\left(y^2 \right)^0}{y^3} \right]^{-3}$$

3.	A culture bacteria in a lab contains 2000 bacterium cells. The number of cells doubles every day. This relationship can be modeled by the equation $N = 2000(2)^t$, where N is the estimated number of bacteria cells and t is the time in days. How many cells were present after two days?
	There will be bacterium cells after 2 days of growth.
	How many cells were present after one week? How many cells were present 2 days ago?
4.	A mountain pine beetle population can triple every year. If the population in Jasper National Park is 10,000 the formula for the population would be $P=10,000()$, n being the # of years.
	How many beetles will there be 2 years from now?
	How many beetles were there 4 years ago?
5.	There are ~ 117 billion grasshoppers in an area of 39,000 km². How many are there per square kilometer? Use exponents to solve.