Reciprocal of a Function

1. Graph the original function.
2. Identify all x-intercepts of the original function (if they exist) and draw vertical asymptotes through each x-intercept.
3. Draw "helpful lines": $y=1$ and $y=-1$
4. Identify all points of intersections of the original function and the line $y=1$ and $y=-1$. These points of intersection (if they exist) are the invariant points, that is, your reciprocal will pass through those points.
5. Determine if a horizontal asymptote exists:

- If the numerator of the reciprocal function is a real number, HA is the x-axis.

6. Sketch the reciprocal following these rules:

- Draw through invariant points
- Avoid asymptotes
- Plot some helpful points (especially if invariant points do not exist) using the mapping notation for the reciprocal: $(\mathrm{x}, \mathrm{y}) \rightarrow\left(\mathrm{x}, \frac{1}{\mathrm{y}}\right)$
- Reciprocal is decreasing where the original is increasing.
- Reciprocal is increasing where the original is decreasing.

