MVT = Mean Value Theorem for Derivatives

Theorem: If $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is continuous at every point of the closed interval $[\mathrm{a}, \mathrm{b}]$ and differentiable at every point of its interior (a, b), then there is at least one point c in (a, b) at which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Example: Consider a function $f(x)=\sqrt{x-1}$ and $1 \leq x \leq 3$.
a) Write an equation of a secant line $A B$ where $A(a, f(a))$ and $B(b, f(b))$.
b) Write an equation of a tangent line to f in the interval (a, b) that is parallel to $A B$.

Revisiting Increasing and Decreasing Functions

Recall the definitions:

Let f be a function define on an interval I and let x_{1} and x_{2} be any two points in I .

1. f in increasing on I if $\mathrm{x}_{1}<\mathrm{x}_{2}$ implies that $f\left(x_{1}\right)<f\left(x_{2}\right)$.
2. f is decreasing on I if $\mathrm{x}_{1}<\mathrm{x}_{2}$ implies that $f\left(x_{1}\right)>f\left(x_{2}\right)$.

Note: A function that is always increasing on a an interval or always decreasing on an interval is said to be monotonic there.

Corollary 1: Increasing and Decreasing Functions

Let f be continuous on $[\mathrm{a}, \mathrm{b}]$ and differentiable on (a, b).

1. If $f^{\prime}>0$ at each point of (a, b), then f is increasing on $[\mathrm{a}, \mathrm{b}]$.
2. If $f^{\prime}<0$ at each point of (a, b), then f is increasing on $[\mathrm{a}, \mathrm{b}]$.

Corollary 2: Functions with $\boldsymbol{f}^{\prime}=\mathbf{0}$ are Constant
If $f^{\prime}(x)=0$ at each point of an interval I , then there is a constant C for which $f(x)=C$ for all x in .

Corollary 3: Functions with the Same Derivative Differ by a Constant.

If $f^{\prime}(x)=g^{\prime}(x)$ at each point of an interval I , then there is a constant C such that $f(x)=g(x)+C$ for all x in I .

HW: p 202-203 \#1-10 (light blue questions) \#1-10 (dark blue questions), \# 15-22,

