CALCULUS 12

MEAN VALUE THEOREM

THEOREM: MEAN VALUE THEOREM FOR DERIVATIVES

If y=f(x) is continuous at every point of the close interval [a,b] and differentiable at every point of its interior (a,b), then there is at least one point c in the interval (a,b) at which

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

۶	In other words, the instantaneous rate of change at some interior point must be equal to the average rate o
	change over the entire interval.

Examples:

Non-examples:

Increasing and Decreasing Functions

DEFINITION: Increasing and Decreasing Function

Let f be a function defined on an interval I and let x_1 and x_2 be any two points in I.

- 1. f increases on I if $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$
- 2. f decreases on I if if $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$

Corollary 1: Increasing and Decreasing Functions

Let f be continuous on [a,b] and differentiable on (a,b).

- 1. if f' > 0 at each point of (a,b), then f increases on [a,b].
- 2. if f' < 0 at each point of (a,b), then f decreases on [a,b].

Example: Find the intervals on which $y = x^3 - 2x + 1$ increases and on which it decreases. Sketch the graph of y and y' on a single grid.

DEFINTION: ANTIDERIVATIVE

A function F(x) is an antiderivative of a function f(x) if F'(x) = f(x) for all x in the domain of f. The process of finding an antiderivative is **antidifferentiation**.

Example: Finding a velocity function and a position function from acceleration and initial position and velocity

HW: p 202 #1-6, #9, #15-22