Logarithms - Test

Date:

Multiple Choice

For #1 to 6, select the best answer.

1. The graph of $f(x) = \log_b x$, b > 1, is translated such that the equation of the new graph is expressed as y-2=f(x-1). The domain of the new function is

A $\{x \mid x > 0, x \in R\}$

C $\{x \mid x \ge 2, x \in R\}$

B $\{x \mid x > 1, x \in R\}$

D $\{x \mid x > 3, x \in \mathbb{R}\}$

2. The x-intercept of the function $f(x) = \log_5 x + 3$ is

A 5^{-3} **B** 0 **C** 1 **D** 5^3

3. The equation $y = \frac{1}{3} \log_2 x$ can also be written as

A $y = 2^{\frac{x}{3}}$ **B** $x = 2^{\frac{y}{3}}$ **C** $2^{3x} = y$ **D** $2^{3y} = x$

4. The range of the inverse function, f^{-1} , of $f(x) = \log_4 x$, is

A $\{y \mid y > 0, y \in R\}$

C $\{ v | v \ge 0, v \in \mathbb{R} \}$

B $\{y \mid y < 0, y \in R\}$

D $\{ y | y \in \mathbb{R} \}$

5. A graph of the function $y = \log_3 x$ is transformed. The image of the point (3, 1) is (6, 3). The equation of the transformed function is

A $y = 3 \log_3 (x - 3)$

C $y-3 = \log_3(x-3)$

B $v = 3 \log_3 (x + 3)$

D $y + 3 = \log_3(x + 3)$

6. If $\log_{27} x = y$, then $\log_9 x$ equals

A $\frac{3y}{2}$ **B** $\frac{2y}{3}$ **C** 3y **D** 4^y

Short Answer

7. If $\log_3 5 = x$, express $2\log_3 45 - \frac{1}{2}\log_3 225$ in terms of x.

8. Determine the value of x algebraically.

a)
$$\log_4 x = -3$$

b)
$$\log_x 64 = \frac{2}{3}$$

c)
$$5^{\log_5 25} = x$$

d)
$$\log_3 (x+1)^2 = 2$$

e)
$$\log_2(\log_x 256) = 3$$

9. Solve for x. CHECK YOUR ANSWERS. Clearly identify all valid answers.

a)
$$\log (2x-3) + \log (x-2) = \log (2x-1)$$

b)
$$\log (x-7) - \log (x-3) = \log (2x+1)$$

c)	$2 \log_2(x-4) - \log_2 x = 1$	
c)	2.1082 (x - 4) - 1082 x - x	

10. The point (6, -4) lies on the graph of $y = \log_b x$. Determine the value of b to the nearest tenth.

Extended Response

11. Solve the equation $5^x = 104$, graphically and algebraically. Round your answer to the nearest hundredth.

- 12. Given $f(x) = \log_3 x$ and $g(x) = \log_3 9x$.
 - a) Describe the transformation of f(x) required to obtain g(x) as a stretch.
 - b) Describe the transformation of f(x) required to obtain g(x) as a translation.
 - c) Determine the x-intercept of f(x). How can the x-intercept of g(x) be determined using your answer to parts a) or b)?

- 14. Identify the following characteristics of the graph of the function $y = 2 \log_4 (x + 1) + 3$.
 - a) the equation of the asymptote

b) the domain and range

c) the x-intercept and the y-intercept

15. An investment of \$2000 pays interest at a rate of 3.5% per year. Determine the number of months required for the investment to grow to at least \$3000 if interest is compounded monthly.

16.	Radioactive iodine-131 has a half-life of 8.1 days. How long does it take for the level of radiation to reduce to 1% of the original level? Express your answer to the nearest tenth.	on