CALCULUS 12

Limits of Rational Functions

- 1. Sketch a graph of $f(x) = \frac{2x^2 + 6x}{2x^2 + x 15}$ Factor (if possible) and simplify.

 - Determine whether a point of discontinuity exists and if it does, state its coordinates.

Determine whether a vertical asymptote exists and if it does, state its equations.

Rewrite the equation in the form $f(x) = \frac{\pm a}{x-h} + k$ and describe how f(x) relates to $\frac{1}{x}$.

- Determine whether a horizontal asymptote exists and if it does, state its equation.
- Classify all discontinuities if the function has them.

• Sketch the graph without using graphing technology.

Determine the following limits:

$$\lim_{x \to -4} \left(\frac{2x^2 + 6x}{2x^2 + x - 15} \right)$$

$$\lim_{x \to 0^{-}} \left(\frac{2x^2 + 6x}{2x^2 + x - 15} \right)$$

$$\lim_{x \to -\infty} \left(\frac{2x^2 + 6x}{2x^2 + x - 15} \right)$$

- 2. Sketch a graph of $f(x) = \frac{x^2 + 5x + 4}{x^2 + x 12}$ Factor (if possible) and simplify.

 - Determine whether a point of discontinuity exists and if it does, state its coordinates.

Determine whether a vertical asymptote exists and if it does, state its equations.

Rewrite the equation in the form $f(x) = \frac{\pm a}{x-h} + k$ and describe how f(x) relates to $\frac{1}{x}$.

Determine whether a horizontal asymptote exists and if it does, state its equation.

Classify all discontinuities if the function has them.

Sketch the graph without using graphing technology.

Determine the following limits:

$$\lim_{x \to -4} \left(\frac{x^2 + 5x + 4}{x^2 + x - 12} \right)$$

$$\lim_{x \to 0^{-}} \left(\frac{x^2 + 5x + 4}{x^2 + x - 12} \right)$$

$$\lim_{x \to -\infty} \left(\frac{x^2 + 5x + 4}{x^2 + x - 12} \right)$$

- 3. Sketch a graph of $f(x) = \frac{x^2 + 8x 48}{-6 0.5x}$ Factor (if possible) and simplify.

 - Determine whether a point of discontinuity exists and if it does, state its coordinates.

Determine whether a vertical asymptote exists and if it does, state its equations.

Rewrite the equation in the form $f(x) = \frac{\pm a}{x-h} + k$ and describe how f(x) relates to $\frac{1}{x}$.

- Determine whether a horizontal asymptote exists and if it does, state its equation.
- Classify all discontinuities if the function has them.

• Sketch the graph without using graphing technology.

• Determine the following limits:

$$\lim_{x \to -12} \frac{x^2 + 8x - 48}{-6 - 0.5x}$$

$$\lim_{x \to 0^{-}} \frac{x^2 + 8x - 48}{-6 - 0.5x}$$

$$\lim_{x \to -\infty} \frac{x^2 + 8x - 48}{-6 - 0.5x}$$