THIS IS AN ADDITIONAL ASSIGNMENT DUE ON ssignment.

No late submissions or re-submissions on this

/46

1. Find each limit. Show your work/reasoning. If you are using your graphing calculator, include a clear sketch of the function.

A.
$$\lim_{x\to 0} (1+x)^{1/x} =$$

B.
$$\lim_{\theta \to 0} \frac{\sin(2\theta)}{\theta} =$$

$$C. \lim_{y\to\infty}\frac{\sqrt{y^2+2}}{5y-6}=$$

D.
$$\lim_{t \to 1^+} \frac{|1-t|}{1-t} =$$

2. Find each of these limits. Use the limits to sketch a graph. Be sure to include any asymptotes, holes, or other important characteristics.

$$f(x) = \frac{x-2}{|x|-2}$$

$$\lim_{x\to\infty}f(x)=$$

$$\lim_{x\to\infty}f(x)=$$

$$\lim_{x\to -2^-} f(x) =$$

$$\lim_{x\to -2^+} f(x) =$$

3. Find each of these limits. Use the limits to sketch a graph. Be sure to include any asymptotes, holes, or other important characteristics.

$$g(\theta) = \ln |\sin \theta|$$

$$\lim_{\theta \to n\pi^+} g(\theta) =$$

For
$$n = 0, \pm 1, \pm 2, \pm 3, \cdots$$

$$\lim_{\theta\to n\pi^-}g(\theta)=$$

For
$$n = 0, \pm 1, \pm 2, \pm 3, \cdots$$

4. Find each of these limits. Use the limits to sketch a graph. Be sure to include any asymptotes, holes, or other important characteristics.

$$h(r) = e^{-r}\cos(2r)$$

$$\lim_{r\to -\infty} h(r) =$$

$$\lim h(r) =$$

5. Find the value of k that would make the function continuous in each case.

A.
$$g(x) = \begin{cases} \frac{e^x - 1}{x} & x \neq 0 \\ k & x = 0 \end{cases}$$

B.
$$h(x) = \begin{cases} \frac{\sin(5\pi x) - 1}{2x - 1} & x \neq \frac{1}{2} \\ k & x = \frac{1}{2} \end{cases}$$

6. Find the value of k that would make the limit exist. Find the limit

$$A. \lim_{x \to \infty} \frac{2x^3 - 6}{x^k + 3}$$

B.
$$\lim_{x\to 2} \frac{x^2 + kx - 10}{x - 2}$$

7. In each case sketch a graph with the given characteristics.

A.
$$f(4)$$
 is undefined and $\lim_{x\to 4} f(x) = 2$

B.
$$f(3) = 2$$
 and $\lim_{x \to 3} f(x)$ does not exist.

C.
$$f(1) = 3$$
 and $\lim_{x \to 1} f(x) = -2$

	٠.