
Notes:

Inverse of a Relation

- Mapping notation: (X) (Y) (Y) X)
 This means that the domain of the original becomes the range of the inverse and the range of the original becomes the domain of the inverse.
- Every relation has an inverse. Inverse of a relation is a "special reflection" of the original relation where the mirror of the reflection is the line $\frac{y = x}{1}$.

When the inverse transformation is carried out on a function that is one-to-one then the inverse itself
is also a function.

- Despite of the notation an inverse is very different from a reciprocal.
- It is possible to strategically restrict the domain of the original function so it becomes one-to-one and its inverse is then also a function. This is most commonly done with trigonometric functions.
- In general, the equation of an inverse can be found algebraically by following these steps:
 - 1. Replace f(x) with "y".
 - 2. Swap every "x" with "y" and "y" with "x".
 - 3. Solve for "y".
 - 4. Use the inverse notation if the resultant relation is also a function.

Example 1: Find the inverse of f(x) = 0.25x - 5

$$y = 0.25x - 5$$

$$x = 0.25y - 5$$

$$x = 0.25y - 5$$

$$0.25 = 0.25y$$

 $\int_{-\infty}^{\infty} (x) = \frac{1}{m} \times -\frac{b}{m}$

Modice: Stones are reinorals.

* last page

Example 2: Find the inverse of $f(x) = 2x^2 + 16x - 5$. Sketch a graph of the original and of the inverse in the same coordinate system.

$$x = 2[(y+4)^2-16]-5$$

$$x = 2(y+4)^2 - 37$$

$$4+37=2(y+4)^2$$

$$\sqrt{\frac{x+37}{2}} = \sqrt{(y+4)^2}$$

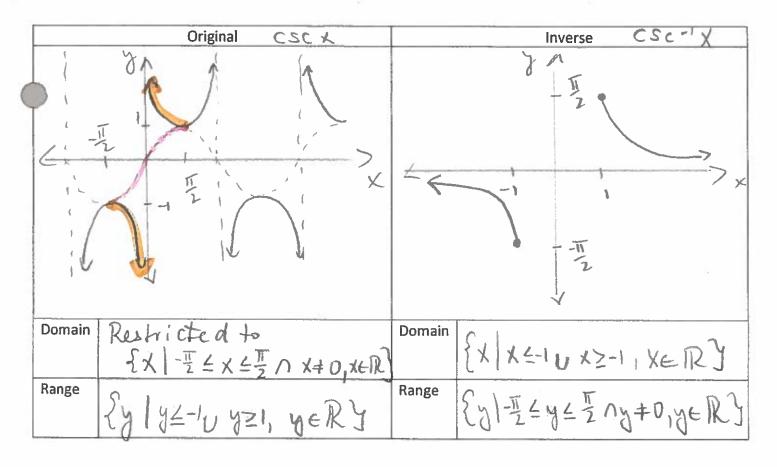
$$\pm\sqrt{\frac{37}{2}}$$
 4-y \leftarrow hot a function

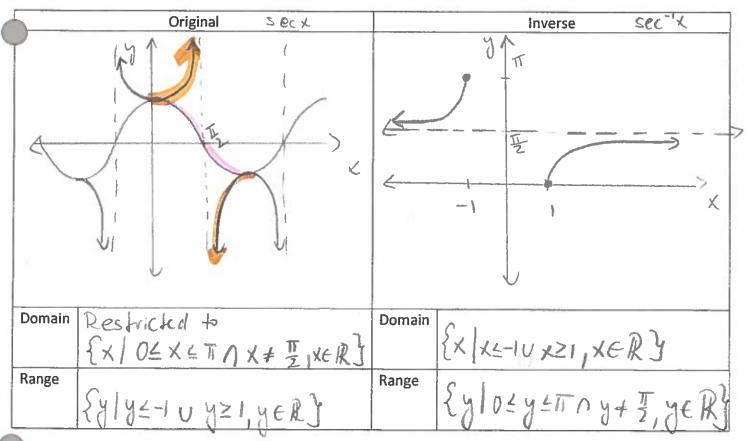
... The inverse of f(x) is
$$y = \pm \sqrt{x + 37} - 4$$

not one-to-one

of the total

Inverse of Trigonometric Functions


- As all trigonometric functions are periodic, they are not one-to-one.
- In order for the inverse any trigonometric function to be a function, we restrict the domain of the original in a specific manner.


Original Sinx	Inverse Sin-1x
4 1	
Domain Restricted to	Domain EX1-14X61, XERY
Range Syl-14yelly	Range $\{y \mid -\frac{1}{2} \leq y \leq \frac{1}{2}, y \in \mathbb{R}^{3}\}$

Original COT X	Inverse CO3 1 X
Domain Restricted +>	Domain O)
[X O L X ETT X E TR Y	{X -1 ≤ X ≤ 1, x ∈ Ry
Range { 1 - 1 = y = 1, y = R }	Range Eylo & y & Try+Ry

Original -au X	Inverse fan' X
Domain Restricted to {x -1/2 < x < 1/2, x < 1/2	Ry Domain EXIXERY
Range LylyeRy	Range Syl-T-yT, yeRy

Original Co+X	inverse Ø+X
Domain Restricted to [X D-X-T, XER]	Domain SXXERY
Range {y y ERY	Range SylozyzTyERY

Example 2 Shetch: · invarient points = 2x2+16x-5/ -4